Peridynamic Modeling, Identification and Validation of Laminates Responses Beyond Damage Initiation
Projektleiter:
Projektbearbeiter:
Dr. Zhenghao Yang
Finanzierung:
With the development of advanced manufacturing technologies,composite materials and laminates are widely used in engineering asthey are advantageous over traditional materials. While the deformation behaviour up to the damage initiation can be predicted bythe classical continuum mechanics with satisfactory accuracy,analysis of progressive failure beyond the critical damage state is still a major challenge. Peridynamics (PD) as a non-local continuum mechanics theory is very suitable for analyzing discontinuous problems such as material failure, crack initialization, crack propagation, crack patterns formation and crack interactions. Based on the recent activities of the research group (RG) in OvGU Magdeburg on PD modeling of crack patterns in float glass,identification of long-range forces in peel films, this project aims to contribute novel formulations for composite laminate structures to offer engineers an alternative solution to tackle fracture problems. A novel PD damage constitutive modeling framework to describedamage initiation, damage growth and crack propagation in a unifiedmanner will be developed by RG in OvGU. Based on the previous research on float glass, the available experimental data will be appliedto identify material parameters, to capture initial distribution of flawsand to describe damage patterns in ring bending tests on glassplates. For the validation, ball drop tests will be simulated and results will be compared with experimental data. In addition, non-local models will be developed and calibrated in OvGU to capture long-range
forces observed in peel tests. By the use of the layer-wise approach the developments will be consolidated to formulate a new PD theory for laminates subjected to severe loading in the post-critical damage regime. Based on the available experimental data on laminated glass, a benchmark problem will be developed and solved to verify the theoretical developments as well as analytical and
numerical solution procedures.
forces observed in peel tests. By the use of the layer-wise approach the developments will be consolidated to formulate a new PD theory for laminates subjected to severe loading in the post-critical damage regime. Based on the available experimental data on laminated glass, a benchmark problem will be developed and solved to verify the theoretical developments as well as analytical and
numerical solution procedures.
Publikationen
Die Daten werden geladen ...
Die Daten werden geladen ...
Kontakt
Prof. Dr.-Ing. habil. Konstantin Naumenko
Otto-von-Guericke-Universität Magdeburg
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758057
weitere Projekte
Die Daten werden geladen ...