Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen GRK 1554 (1)
Projektleiter:
Projektbearbeiter:
MSc Helal Chowdhury
Projekthomepage:
Finanzierung:
Forschergruppen:
Teilprojekt: Modeling inelastic behavior of Al-rich TiAl alloys at high homologous temperature
Betreuung: Prof. Naumenko
Partner: Prof. M. Krüger, Prof. H. Altenbach
Many versions of Ti-rich intermetallic alloys including Polysyntheticallytwinned (PST) crystals with
gamma-TiAl + 2-Ti3Al are widely used for temperatures up tol 900°C in various industrial applications like in aerospace engine, gas turbine, petroleum, medical and defense industries due to their high strength,good oxidation and ignition resistance combined with good creep properties at high temperatures, fracture toughness, corrosive resistance, low density, highthermal capability, and biocompatibility, etc. In this project single crystal Ti-61.8at.%Al Al-rich binary intermetallic compound with lamellar phases ofgamma-TiAl matrix phase is analysed within the framework of crystal viscoplasticity. Based on several experimental data for stress response under compression, the modelling should predict the anisotropic behavior, tension-compression asymmetry as well as under complex multi-axial loading conditions.
Betreuung: Prof. Naumenko
Partner: Prof. M. Krüger, Prof. H. Altenbach
Many versions of Ti-rich intermetallic alloys including Polysyntheticallytwinned (PST) crystals with
gamma-TiAl + 2-Ti3Al are widely used for temperatures up tol 900°C in various industrial applications like in aerospace engine, gas turbine, petroleum, medical and defense industries due to their high strength,good oxidation and ignition resistance combined with good creep properties at high temperatures, fracture toughness, corrosive resistance, low density, highthermal capability, and biocompatibility, etc. In this project single crystal Ti-61.8at.%Al Al-rich binary intermetallic compound with lamellar phases ofgamma-TiAl matrix phase is analysed within the framework of crystal viscoplasticity. Based on several experimental data for stress response under compression, the modelling should predict the anisotropic behavior, tension-compression asymmetry as well as under complex multi-axial loading conditions.
Schlagworte
Korngrenzenschädigung, Mikromechanik, Simulation, Voronoi-Diagramm, Werkstoffkriechen
Kontakt
Prof. Dr.-Ing. habil. Konstantin Naumenko
Otto-von-Guericke-Universität Magdeburg
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758057
weitere Projekte
Die Daten werden geladen ...