Perioperative Adaptions of Functional Brain Networks
Projektleiter:
Finanzierung:
Brainfunction is based on the integrity of functional brain networks. Impairements of functional brain networks manifest in neurological deficits.
During our clinical routine we already use high resolution, contrast enhanced, perfusion- and diffusion based as well as task based magnet resonance imaging to delineate structural and functional correlates of neurological deficits. Measurements of spontanous activity at rest to delineate functional brain networks are missing so far. Though they now state a the only technique to delineate functional brain networks.
During recent years resting state functional brain imaging gained importance for clinical applications in diseases like Autism, Schizophrenia, Alzheimer or Parkinson’s (Fox and Greicius et al. 2010). E g. in ADHS-Syndrom decreased functional connectivity of ACC (anterior cingulate cortex) and PCC (posterior cingulate cortex) could be described (Castellanos et al. 2008). The relevance of this technique as an objective diagnostic measurement is object of research.
Another future application is the delineation of eloquent brain areas for neurosurgical guidance. Up to date tasked based fMRI is used to delineate these - often individual or pathological relocated - brain areas (Petrella et al. 2006). In unconscious, impaired or pediatric patients task based approaches are limited. We here test for the relevance of resting state brain networks for the delineation of otherwise concealed eloquent brain networks (Nandakumar et al. 2019).
During our clinical routine we already use high resolution, contrast enhanced, perfusion- and diffusion based as well as task based magnet resonance imaging to delineate structural and functional correlates of neurological deficits. Measurements of spontanous activity at rest to delineate functional brain networks are missing so far. Though they now state a the only technique to delineate functional brain networks.
During recent years resting state functional brain imaging gained importance for clinical applications in diseases like Autism, Schizophrenia, Alzheimer or Parkinson’s (Fox and Greicius et al. 2010). E g. in ADHS-Syndrom decreased functional connectivity of ACC (anterior cingulate cortex) and PCC (posterior cingulate cortex) could be described (Castellanos et al. 2008). The relevance of this technique as an objective diagnostic measurement is object of research.
Another future application is the delineation of eloquent brain areas for neurosurgical guidance. Up to date tasked based fMRI is used to delineate these - often individual or pathological relocated - brain areas (Petrella et al. 2006). In unconscious, impaired or pediatric patients task based approaches are limited. We here test for the relevance of resting state brain networks for the delineation of otherwise concealed eloquent brain networks (Nandakumar et al. 2019).
Kontakt
Dr. Karl Hartmann
Otto-von-Guericke-Universität Magdeburg
Universitätsklinik für Neurochirurgie
Leipziger Str. 44
39120
Magdeburg
Tel.:+49 391 6715534
weitere Projekte
Die Daten werden geladen ...