Forschungsschwerpunkt Nanostrukturierte Materialien
Projektleiter:
Finanzierung:
Structured soft materials, made from small organic molecules or macromolecules of synthetic and biological origin, display multiple and tunable attributes, based not only on a large variety of chemical building blocks, but also on their ability to self-assemble into highly organised structures and materials. The function of soft-matter materials is thus encoded in their form, both in the specific conformations of individual molecules and in structures resulting from complex ordering processes. In general, the underlying self-assembly processes are governed by interactions between the components as well as various constraints imposed by the molecular structure of the components. In soft matter, the resulting final form is often generated by multiple assembly steps, typically separated by low energy barriers. In many cases, therefore, the kinetics of structure formation plays an important role. As a consequence, the final degree of molecular order is limited but nevertheless specific and complexity is high. This is in contrast to hard matter , where in most cases a high degree of long-range order is found, so that structural complexity must be enforced by top-down processing. In many applications, the desired function of macromolecular materials is based on their special mechanical properties; in others, soft matter systems are suited to functions such as switchable optical properties (liquid crystals), electronic or optoelectronic properties (organic semiconductors), spatial segregation of components into compartments (membranes) or biochemical activity (proteins).
Schlagworte
Nanostrukturierte Materialien
Kontakt
Prof. Dr. Wolfgang H. Binder
Martin-Luther-Universität Halle-Wittenberg
Naturwissenschaftliche Fakultät II
Von-Danckelmann-Platz 4
06120
Halle (Saale)
Tel.:+49 345 5525930
weitere Projekte
Die Daten werden geladen ...