« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Experimentelle und numerische Untersuchungen zur Verfestigung in Ein- und Polykristallen bei zyklischer Belastung (Bauschinger Effekt)
Projektbearbeiter:
MSc. Simon Schilli
Finanzierung:
Deutsche Forschungsgemeinschaft (DFG) ;
Experimentelle und numerische Untersuchungen zur Verfestigung in Ein- und Polykristallen bei zyklischer Belastung (Bauschinger Effekt)
Zyklisches Spannungs-Dehnungsdiagramm
Die Lebensdauer von zyklisch belasteten metallischen Komponenten ist meist durch die Ermüdung der eingesetzten Werkstoffe begrenzt. Teilweise Irreversibilität der zyklischen Verformung führt zu Dehnungslokalisierung, Rissbildung und -ausbreitung und schließlich zum Bruch. Insbesondere ergeben ungünstige Orientierungen der Körner und Korngrenzen zusätzliche Spannungskonzentrationen, so dass selbst bei makroskopisch elastischen Deformationen lokale Plastizität in den Körnern auftritt. Diese lässt sich durch herkömmliche makroskopische Werkstoffmodelle nicht berücksichtigen. Von besonderer Bedeutung ist der Bauschinger-Effekt, über den sich die richtungsabhängige Verfestigung des Werkstoffs beschreiben lässt. Um ein grundlegendes Verständnis zum Bauschinger-Effekt gewinnen zu können, werden beim Projektpartner am Institut für Eisenhüttenkunde (IEHK) der RWTH Aachen mikromechanische und makromechanische Versuche und mikrostrukturelle Untersuchungen (Rasterelektronenmikroskopie mit EBSD/FIB und Transmissionselektronenmikroskopie) durchgeführt. Auf deren Grundlage werden Einkristall- und Vielkristallplastizitätsmodelle entwickelt, die eine explizite Einbeziehung des Bauschinger-Effekts in Finite-Elemente Berechnungen ermöglichen. Ziel ist die Identifikation von Zusammenhängen zwischen Ein- und Polykristallverfestigung. Dafür werden mikrostrukturbasierte Finite-Elemente-Modelle hinsichtlich des Zusammenhangs der kinematischen Verfestigung von Verformungsinkompatibilitäten durch unterschiedliche Kornorientierungen, dem Verhältnis von Korn- zu Modellgröße sowie der kinematischen Verfestigung im einzelnen Korn untersucht. Auf Grundlage der aus den mikrostrukturbasierten Berechnungen erzielten Ergebnisse werden die Werkstoffkennwerte geeigneter makroskopischer Plastizitätsmodelle ermittelt und in Zusammenhang zu den auf die Gleitsysteme bezogenen Kennwerten gestellt. Durch den Vergleich der lokalen Rückspannungstensoren mit dem makroskopischen Rückspannungstensor können Aussagen zum Beitrag der Inhomogenität zum Bauschinger-Effekt getroffen werden. Verifikationsexperimente an zwei technisch bedeutsamen Konstruktionswerkstoffen (Duplexstahl 1.4462 und Nickelbasissuperlegierung Alloy 718) werden die Möglichkeiten und Grenzen der Modelle aufzeigen.

Kooperationen im Projekt

Kontakt

weitere Projekte

Die Daten werden geladen ...