« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Anwendung der Scaled Boundary Finite Elemente Methode zur Beschreibung der nichtlinearen Wechselwirkung in hydrodynamisch gelagerten Rotorsystemen
Projektbearbeiter:
M.Sc. Simon Pfeil
Finanzierung:
Fördergeber - Sonstige;
Anwendung der Scaled Boundary Finite Elemente Methode zur Beschreibung der nichtlinearen Wechselwirkung in hydrodynamisch gelagerten Rotorsystemen
SBFEM-Modell bestehend aus zwei Superelementen für ein Lager mit einer Zuführnut (links), exemplarische dimensionslose Druckverteilung als Ergebnis des Modellansatzes
Das Ziel dieses Projekts ist die Entwicklung einer effizienten Methodik zur Abbildung der nichtlinearen Eigenschaften hydrodynamischer Gleitlager in transienten Rotordynamiksimulationen. Dazu ist eine effiziente Lösung der Reynoldsgleichung notwendig, für die die semi-analytischen Scaled Boundary Finite Element Method (SBFEM) genutzt wird. Auf diese Weise sollen die Berechnungszeiten gegenüber herkömmlichen, numerischen Methoden reduziert werden, ohne dass dafür eine Vereinfachung der Randbedingungen, wie in analytischen Approximationen, nötig ist.

Das Betriebsverhalten schnelldrehender gleitgelagerter Rotorsysteme wird maßgeblich durch die nichtlinearen Lagereigenschaften beeinflusst. Ein typisches Beispiel hierfür ist das Auftreten selbsterregter, subharmonischer Schwingungen. Diese können die Lebensdauer der Komponenten beeinträchtigen und zu einer erhöhten Verlustleistung sowie kritischen Geräuschemissionen führen und müssen daher bei der Auslegung berücksichtigt werden. Dazu ist eine präzise Analyse des dynamischen Verhaltens erforderlich, welche allerdings oftmals erst in einem späten Stadium des Produktentwicklungsprozess anhand von Prüfstandversuchen erfolgt. Werden dabei Mängel offengelegt, deren Beseitigung Änderungen am Produkt erfordert, verlängert sich die Entwicklungszeit und es entstehen zusätzliche Kosten. Um dies zu vermeiden, werden vermehrt dynamische Simulationen in den Produktentwicklungsprozess integriert, welche bereits vor der Fertigung eines Prototyps eine Untersuchung des Betriebsverhaltens erlauben. Entscheidend ist dabei die realitätsnahe Abbildung der nichtlinearen Zusammenhänge zwischen den dynamischen und hydrodynamischen Teilsystemen im Simulationsmodell. Dazu werden die Bewegungsgleichungen in ein Zeitschrittverfahren eingebettet und mit der Reynoldsgleichung gekoppelt, welche den hydrodynamischen Druckaufbau im Gleitlager beschreibt. Die Lösung der Reynoldsgleichung erfolgt dabei in der Regel numerisch oder auf Kennfeldern basierend, da geschlossene analytische Lösungen nur für stark vereinfachte Fälle bekannt sind. Für die numerische Lösung ist eine zweidimensionale Diskretisierung des Schmierspalts erforderlich, welche in Verbindung mit der hohen Anzahl an Zeitschritten einen erheblichen Rechenaufwand mit sich bringt. Der Kennfeldansatz ist wiederum nur mit beschränkter Modellierungstiefe möglich bzw. sinnvoll, da jeder berücksichtigte physikalische Effekt den Interpolationsaufwand erhöht. Um eine effiziente Alternative zu den herkömmlichen Methoden zu schaffen, wird in diesem Projekt eine semi-analytische Lösung entwickelt. Die dadurch erzielte Reduzierung der Rechenzeiten soll in industriellen und wissenschaftlichen Anwendungen zur Zeit- und Kostenersparnis beitragen. Die entwickelte Methodik basiert auf der SBFEM und bedarf im Gegensatz zu den numerischen Lösungsverfahren lediglich einer eindimensionalen Diskretisierung. Dabei wird die ursprünglich partielle Differentialgleichung in ein gewöhnliches Differentialgleichungssystem überführt, welches mit einen Exponentialansatz lösbar ist. Um die Effizienz weiter zu verbessern, wird die SBFEM-Lösung mit verschiedenen Strategien zur Reduzierung der benötigten Anzahl an Freiheitsgraden kombiniert.

Publikationen

2021
Die Daten werden geladen ...
Kontakt

weitere Projekte

Die Daten werden geladen ...