Optimales Design für Sphärische Versuchsbereiche (II)
Projektleiter:
Projektbearbeiter:
Dipl.-Math. Martin Radloff
Finanzierung:
Fördergeber - Sonstige;
Die Gültigkeit statischer Modelle ist oft auf einen lokalen Bereich der eklärenden Variablen beschränkt. Dieser wird in vielen Anwendungsbereichen als rechteckig angenommen, d.h. die erklärenden Variablen können unabhängig voneinander variieren. In manchen Situationen sind jedoch sphärische Bereiche sinnvoller, die durch einen beschränkten Euklidischen oder Mahalanobis-Abstand zu einem zentralen Punkt für die Versuchseinstellungen beschrieben werden können.
Ziel der Versuchsplanung ist es, optimale oder zumindest effiziente Einstellungen für die erklärenden Variablen zu bestimmen, um die Qualität der statistischen Analyse zu optimieren. Beim Vorliegen klassischer linearer Regressionsmodelle sind Charakterisierungen optimaler Designs für sphärische Versuchsbereiche mit Hilfe von Invarianzen und Symmetrien schon seit längerem bekannt. Fragestellung dieses Projekts ist es, für die in der statistischen Praxis zunehmend verwendeten verallgemeinerten linearen Modelle bzw. nichtlinearen Modelle optimale Designs auf derartigen sphärischen Versuchsbereichen zu bestimmen. Erste Ergebnisse für Poisson-verteilte Zähldaten zeigen deutliche Abweichungen der hierfür benötigten optimalen Designs von denjenigen für klassische lineare Modelle.
Ziel der Versuchsplanung ist es, optimale oder zumindest effiziente Einstellungen für die erklärenden Variablen zu bestimmen, um die Qualität der statistischen Analyse zu optimieren. Beim Vorliegen klassischer linearer Regressionsmodelle sind Charakterisierungen optimaler Designs für sphärische Versuchsbereiche mit Hilfe von Invarianzen und Symmetrien schon seit längerem bekannt. Fragestellung dieses Projekts ist es, für die in der statistischen Praxis zunehmend verwendeten verallgemeinerten linearen Modelle bzw. nichtlinearen Modelle optimale Designs auf derartigen sphärischen Versuchsbereichen zu bestimmen. Erste Ergebnisse für Poisson-verteilte Zähldaten zeigen deutliche Abweichungen der hierfür benötigten optimalen Designs von denjenigen für klassische lineare Modelle.
Publikationen
Die Daten werden geladen ...
Die Daten werden geladen ...
Kontakt
Prof. Dr. Rainer Schwabe
Otto-von-Guericke-Universität Magdeburg
Institut für Mathematische Stochastik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758304
weitere Projekte
Die Daten werden geladen ...