Partikelbasierter Ansatz für die Fluid-Struktur-Interaktion
Projektleiter:
Projektbearbeiter:
Dipl.-Ing. Sebastian Koch
Finanzierung:
Fördergeber - Sonstige;
Ziel des Projekts ist es zur Untersuchung der Fluid-Festkörper-Interaktion eine allgemeine Vorgehensweise abzuleiten, welche die bestehenden Berechnungsmethoden der Finiten Elemente Methode (FEM) und der Smoothed Particle Hydrodynamic (SPH) koppeln. Ein im Vorfeld experimentell untersuchtes System, bei dem die Wechselwirkungen zwischen Fluid und umgebender Struktur notwendigerweise abzubilden sind, stellt die Ölwanne dar. Infolge der Ölfüllung kommt es zu einer Verschiebung der Eigenfrequenzen und einer Veränderung der Schwingungsamplituden, was vor allem einen signifikanten Einfluss auf die Schallabstrahlung hat.
Die SPH-Methode ist eine makroskoposche Simulationsmethode, bei der das Fluid durch diskrete Punkte approximiert wird. Das Bewegungsverhalten dieser Punkte, welche jeweils Teilvolumina des Gesamtfluids darstellen, wird mit der Navier-Stokes-Gleichung beschrieben. Namensgebend für dieses Verfahren ist die Glättung der Teilcheneigenschaften, bei der die Wirkung der Nachbarpartikel auf einen Partikel abhängig von deren Abstand ist. Auf diese Weise wird jeder Partikel nur von den Partikeln seiner direkten Nachbarschaft beeinflusst. Daraus resultiert eine große Anzahl kleiner Gleichungssysteme, welche gut parallelisierbar sind und mit geringem numerischen Aufwand gelöst werden können. Zur Abbildung wird aufrund der Bewegung der Fluidpartikel untereinander häufig auf die flexible und robuste lagrangsche, netzlose Methode zurückgegriffen, welche sich besonders für Mehrphasenströmungen und große Verformungen eignet, allerdings auch bei der Simulation von Schweißenprozessen Anwendung findet.
Im Gegensatz zur SPH ist die FEM ein numerisches Verfahren, welches neben anderen physikalischen Problemstellungen vor allem im Bereich von Festigkeits- und Verformungsuntersuchungen angewendet wird.
Während bei der SPH viele kleine Gleichungssysteme gelöst werden, wird bei der FEM ein großes Gleichungssystem gelöst, was einen signifikanten numerischen Aufwand darstellt. Allerdings kann im Gegenzug auf aufwändige Suchoperationen, welche bei der SPH aufgrund der Formulierung notwendig sind, verzichtet werden.
Das allgemeine Konzept der Kopplung der FEM mit der SPH wird in einem ersten Schritt durch eine Co-Simulation beider Teilelemente realisiert, wobei beide Methoden abwechselnd ausgeführt und Übergabeinformationen wie Position und Druck der Partikel bzw. Knoten austauschen werden. Im weiteren Verlauf dieser Untersuchung wird eine vollständige Kopplung der Verfahren angestrebt, bei der nur ein Solver verwendet wird, was eine ganzheitliche Darstellung der Wirkzusammenhänge ermöglicht.
Die SPH-Methode ist eine makroskoposche Simulationsmethode, bei der das Fluid durch diskrete Punkte approximiert wird. Das Bewegungsverhalten dieser Punkte, welche jeweils Teilvolumina des Gesamtfluids darstellen, wird mit der Navier-Stokes-Gleichung beschrieben. Namensgebend für dieses Verfahren ist die Glättung der Teilcheneigenschaften, bei der die Wirkung der Nachbarpartikel auf einen Partikel abhängig von deren Abstand ist. Auf diese Weise wird jeder Partikel nur von den Partikeln seiner direkten Nachbarschaft beeinflusst. Daraus resultiert eine große Anzahl kleiner Gleichungssysteme, welche gut parallelisierbar sind und mit geringem numerischen Aufwand gelöst werden können. Zur Abbildung wird aufrund der Bewegung der Fluidpartikel untereinander häufig auf die flexible und robuste lagrangsche, netzlose Methode zurückgegriffen, welche sich besonders für Mehrphasenströmungen und große Verformungen eignet, allerdings auch bei der Simulation von Schweißenprozessen Anwendung findet.
Im Gegensatz zur SPH ist die FEM ein numerisches Verfahren, welches neben anderen physikalischen Problemstellungen vor allem im Bereich von Festigkeits- und Verformungsuntersuchungen angewendet wird.
Während bei der SPH viele kleine Gleichungssysteme gelöst werden, wird bei der FEM ein großes Gleichungssystem gelöst, was einen signifikanten numerischen Aufwand darstellt. Allerdings kann im Gegenzug auf aufwändige Suchoperationen, welche bei der SPH aufgrund der Formulierung notwendig sind, verzichtet werden.
Das allgemeine Konzept der Kopplung der FEM mit der SPH wird in einem ersten Schritt durch eine Co-Simulation beider Teilelemente realisiert, wobei beide Methoden abwechselnd ausgeführt und Übergabeinformationen wie Position und Druck der Partikel bzw. Knoten austauschen werden. Im weiteren Verlauf dieser Untersuchung wird eine vollständige Kopplung der Verfahren angestrebt, bei der nur ein Solver verwendet wird, was eine ganzheitliche Darstellung der Wirkzusammenhänge ermöglicht.
Publikationen
Die Daten werden geladen ...
Kontakt
Prof. Dr.-Ing. Elmar Woschke
Otto-von-Guericke-Universität Magdeburg
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6757071
weitere Projekte
Die Daten werden geladen ...