Quasi-Newton algorithmus zum optimalen Design
Projektleiter:
Finanzierung:
Fördergeber - Sonstige;
Im Rahmen der approximativen Design-Theorie für lineare Regressionsmodelle sollen optimale Designs algorithmisch berechnet werden (insbesondere D-optimale und I-optimale Designs). Ein universell einsetzbarer Algorithmus existiert nicht.
Unsere Quasi-Newton Methoden (s. Gaffke; Schwabe, 2019) sollen auf den Fall eines endlichen Versuchsbereichs angewendet und als R-Programm implementiert werden.
Literatur:
Gaffke, N.; Schwabe, R.: Quasi-Newton algorithm for optimal approximate linear regression design: Optimization in matrix space. Journal of Statistical Planning and Inference 198 (2019), 62-78.
Unsere Quasi-Newton Methoden (s. Gaffke; Schwabe, 2019) sollen auf den Fall eines endlichen Versuchsbereichs angewendet und als R-Programm implementiert werden.
Literatur:
Gaffke, N.; Schwabe, R.: Quasi-Newton algorithm for optimal approximate linear regression design: Optimization in matrix space. Journal of Statistical Planning and Inference 198 (2019), 62-78.
Schlagworte
Optimale Design, lineare Regressionsmodelle
Kooperationen im Projekt
Kontakt
Prof. Dr. Norbert Gaffke
Otto-von-Guericke-Universität Magdeburg
Institut für Mathematische Stochastik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758306
weitere Projekte
Die Daten werden geladen ...