Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Wir nutzen textuelle Transcripte um Interaktionsstile und Diskursverläufe zu analysieren. Der individuelle Erfolgszustand des Nutzers wird mit einem Hidden Markov Modell modelliert, indem die beobachteten System-Rückmeldungen zum Training benutzt werden. Anschliessend werden semi-automatsich Signifikante Dialogverläufe annotiert und detektiert.
Linguistic-Phonetic Analysis
We used textual transcripts to analyse interaction styles and discourse structures. Further, we model the subject's internal success state with a hidden Markov model trained using the observed sequences of system feedback. Aiming on automatic detection of specic subjects's reactions, we then semi-automatically annotate significant dialog events, i.e. phrases indicating an irregular, i.e. not-task-oriented subject behavior. We use both acoustic and linguistic features to build several trait-specic classiers for dialog phases.
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Wir nutzen textuelle Transcripte um Interaktionsstile und Diskursverläufe zu analysieren. Der individuelle Erfolgszustand des Nutzers wird mit einem Hidden Markov Modell modelliert, indem die beobachteten System-Rückmeldungen zum Training benutzt werden. Anschliessend werden semi-automatsich Signifikante Dialogverläufe annotiert und detektiert.