Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Context-Dependent Learning and Memory Modelling in Cognitive Behavioral Scenarios
Zwei Modelle des assoziativen und kontextabhängigen Lernens werden modelliert. Damit können Versuche mit menschlichen Probanden, welche Teil der Arbeit von Prof. Dr. Jochen Braun und der Doktorarbeit von Dipl.-Ing. Oussama Hamid sind , informationstechnisch nachvollzogen werden. Die beiden Modelle verfolgen jeweils zwei unterschiedliche Ansätze und wurden in Matlab implementiert. Ein Ansatz zur Modellierung basiert auf einem Markov-Entscheidungsprozess (engl. Markov Decision Process), wie er häufig im Bereich des Maschinellen Lernens verwendet wird. Ein damit entworfener menschenähnlicher Lernalgorithmus wurde anschließend um die Fähigkeit erweitert aus dem Zeitkontext in der Lernaufgabe Nutzen zu ziehen. Der zweite Ansatz ist ein Kapazitätsmodell, welches sich auf Erkenntnisse aus der Gedächtnispsychologie stützt. Das Lernen von Assoziationen wird als Prozess im Kurzzeitgedächtnis modelliert, wobei der zeitliche Kontext unterstützend wirkt. Die Kapazität des Kurzzeitspeichers ist dabei der limitierende Faktor. Die Rolle der zeitlichen Information wurde auf verschiedene Weisen in das Modell implementiert. Es kann z.B. ein Einfluss auf die Vergessensrate oder auf das Erinnerungsvermögen der Probanden simuliert werden. Für die Simulation von Umlernen bei Kontextwechsel wurde zusätzlich ein Langzeitgedächtnis in das Modell eingefügt. informationstechnisch nachvollzogen werden. Die beiden Modelle verfolgen jeweils zwei unterschiedliche Ansätze und wurden in Matlab implementiert.
Zwei Modelle des assoziativen und kontextabhängigen Lernens werden modelliert. Damit können Versuche mit menschlichen Probanden, welche Teil der Arbeit von Prof. Dr. Jochen Braun und der Doktorarbeit von Dipl.-Ing. Oussama Hamid sind , informationstechnisch nachvollzogen werden. Die beiden Modelle verfolgen jeweils zwei unterschiedliche Ansätze und wurden in Matlab implementiert.
Ein Ansatz zur Modellierung basiert auf einem Markov-Entscheidungsprozess (engl. Markov Decision Process), wie er häufig im Bereich des Maschinellen Lernens verwendet wird. Ein damit entworfener menschenähnlicher Lernalgorithmus wurde anschließend um die Fähigkeit erweitert aus dem Zeitkontext in der Lernaufgabe Nutzen zu ziehen.
Der zweite Ansatz ist ein Kapazitätsmodell, welches sich auf Erkenntnisse aus der Gedächtnispsychologie stützt. Das Lernen von Assoziationen wird als Prozess im Kurzzeitgedächtnis modelliert, wobei der zeitliche Kontext unterstützend wirkt. Die Kapazität des Kurzzeitspeichers ist dabei der limitierende Faktor. Die Rolle der zeitlichen Information wurde auf verschiedene Weisen in das Modell implementiert. Es kann z.B. ein Einfluss auf die Vergessensrate oder auf das Erinnerungsvermögen der Probanden simuliert werden. Für die Simulation von Umlernen bei Kontextwechsel wurde zusätzlich ein Langzeitgedächtnis in das Modell eingefügt. informationstechnisch nachvollzogen werden. Die beiden Modelle verfolgen jeweils zwei unterschiedliche Ansätze und wurden in Matlab implementiert.
Schlagworte
Fusion von Entscheidungsmodellen, Kapazitive Gedächtnismodelle, Kontextabhängiges Entscheiden, Markov-Modelle
Publikationen
2007
Die Daten werden geladen ...
Keine Ergebnisse gefunden, bitte ändern Sie Ihre Suchanfrage.
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Context-Dependent Learning and Memory Modelling in Cognitive Behavioral Scenarios
Zwei Modelle des assoziativen und kontextabhängigen Lernens werden modelliert. Damit können Versuche mit menschlichen Probanden, welche Teil der Arbeit von Prof. Dr. Jochen Braun und der Doktorarbeit von Dipl.-Ing. Oussama Hamid sind , informationstechnisch nachvollzogen werden. Die beiden Modelle verfolgen jeweils zwei unterschiedliche Ansätze und wurden in Matlab implementiert. Ein Ansatz zur Modellierung basiert auf einem Markov-Entscheidungsprozess (engl. Markov Decision Process), wie er häufig im Bereich des Maschinellen Lernens verwendet wird. Ein damit entworfener menschenähnlicher Lernalgorithmus wurde anschließend um die Fähigkeit erweitert aus dem Zeitkontext in der Lernaufgabe Nutzen zu ziehen. Der zweite Ansatz ist ein Kapazitätsmodell, welches sich auf Erkenntnisse aus der Gedächtnispsychologie stützt. Das Lernen von Assoziationen wird als Prozess im Kurzzeitgedächtnis modelliert, wobei der zeitliche Kontext unterstützend wirkt. Die Kapazität des Kurzzeitspeichers ist dabei der limitierende Faktor. Die Rolle der zeitlichen Information wurde auf verschiedene Weisen in das Modell implementiert. Es kann z.B. ein Einfluss auf die Vergessensrate oder auf das Erinnerungsvermögen der Probanden simuliert werden. Für die Simulation von Umlernen bei Kontextwechsel wurde zusätzlich ein Langzeitgedächtnis in das Modell eingefügt. informationstechnisch nachvollzogen werden. Die beiden Modelle verfolgen jeweils zwei unterschiedliche Ansätze und wurden in Matlab implementiert.
Schlagworte
Fusion von Entscheidungsmodellen, Kapazitive Gedächtnismodelle, Kontextabhängiges Entscheiden, Markov-Modelle
Publikationen
2007
Die Daten werden geladen ...
Keine Ergebnisse gefunden, bitte ändern Sie Ihre Suchanfrage.