Posterior consistency for the spectral density of non-Gaussian stationary time series
Projektleiter:
Finanzierung:
Various nonparametric approaches for Bayesian spectral density estimation of stationary time series have been suggested in the literature, mostly based on the Whittle likelihood approximation. A generalization of this approximation has been proposed in Kirch et al. who prove posterior consistency for spectral density estimation in combination with the Bernstein-Dirichlet process prior for Gaussian time series. In this paper, we will extend the posterior consistency result to non-Gaussian time series by employing a general consistency theorem of Shalizi for dependent data and misspecified models. As a special case, posterior consistency for the spectral density under the Whittle likelihood as proposed by Choudhuri, Ghosal and Roy is also extended to non-Gaussian time series. Small sample properties of this approach are illustrated with several examples of non-Gaussian time series.
Kooperationen im Projekt
Kontakt
Prof. Dr. Claudia Kirch
Otto-von-Guericke-Universität Magdeburg
Institut für Mathematische Stochastik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6752068
weitere Projekte
Die Daten werden geladen ...