« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Pore network modeling of freeze drying on the basis of lyomicroscopic and tomographic measurements
Projektbearbeiter:
Dr. Nicole Vorhauer, MSc. Maximilian Thomik
Finanzierung:
Deutsche Forschungsgemeinschaft (DFG) ;
Freeze drying is a necessary and common process in the manufacturing of high-value products, but it is also slow and expensive. Efforts to increase the efficiency push the process into regions, in which the solid scaffold of the product can soften and collapse. Such damaging events are always local and can thus not be captured by conventional continuum models, which are also otherwise limited in their predictive ability. Therefore, and for the first time, a pore network model capable of representing the microscale shall be developed for freeze drying in this project. The pore network will be three-dimensional and irregular. It will account for the local, pore-scale variation of heat and mass transport as well as of structure and properties of the drying body, with two-way coupling between heat transport and drying. Freezing experiments and experiments of subsequent freeze drying of aqueous sugar solutions in a lyomicroscope will guide model development. Freezing is a crucial step, because it creates around ice crystals of different size and shape the solid scaffold to be subsequently dried. The morphology of the frozen or freeze dried material is evaluated on the basis of three-dimensional X-ray tomography data and used to generate realistic pore networks. Parameters of the pore network model are identified and the model is validated by freeze drying experiments conducted both outside and within the region of conditions that result in structural collapse.

Kooperationen im Projekt

Kontakt

weitere Projekte

Die Daten werden geladen ...