« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Mathematische Komplexitätsreduktion (GRK 2297/1)
Projektbearbeiter:
Prof. Dr. Volker Kaibel, Jun.-Prof. Dr. Gennadiy Averkov, Prof. Dr. Benjamin Nill, Prof. Dr. Alexander Pott, Prof. Dr. Claudia Kirch, Prof. Dr. Rainer Schwabe, Jun.-Prof. Dr. Thomas Kahle, Prof. Dr.-Ing. Rolf Findeisen, Prof. Dr. Peter Benner
Finanzierung:
Deutsche Forschungsgemeinschaft (DFG) ;
Das Projekt wird von den genannten Principal Investigators getragen. Diese sind den Instituten für Mathematische Optimierung (Averkov, Kaibel, Sager), für Algebra und Geometrie (Kahle, Nill, Pott), für Mathematische Stochastik (Kirch, Schwabe) und für Analysis und Numerik (Benner) der Fakultät zugeordnet. Benner ist zudem Direktor des Max-Planck Institutes für Dynamik komplexer technischer Systeme. Die Fakultät für Elektrotechnik und Informationstechnik ist über Findeisen beteiligt.

Im Kontext des vorgeschlagenen Graduiertenkollegs (GK) verstehen wir Komplexität als eine intrinsische Eigenschaft, die einen mathematischen Zugang zu einem Problem auf drei Ebenen erschwert. Diese Ebenen sind eine angemessene mathematische Darstellung eines realen Problems, die Erkenntnis fundamentaler Eigenschaften und Strukturen mathematischer Objekte und das algorithmische Lösen einer mathematischen Problemstellung. Wir bezeichnen alle Ansätze, die systematisch auf einer dieser drei Ebenen zu einer zumindest partiellen Verbesserung führen, als mathematische Komplexitätsreduktion.

Für viele mathematische Fragestellungen sind Approximation und Dimensionsreduktion die wichtigsten Werkzeuge auf dem Weg zu einer vereinfachten Darstellung und Rechenzeitgewinnen. Wir sehen die Komplexitätsreduktionin einem allgemeineren Sinne und werden zusätzlich auch Liftings in höherdimensionale Räume und den Einfluss der Kosten von Datenerhebungen systematisch untersuchen. Unsere Forschungsziele sind die Entwicklung von mathematischer Theorie und Algorithmen sowie die Identifikation relevanter Problemklassen und möglicher Strukturausnutzung im Fokus der oben beschriebenen Komplexitätsreduktion.

Unsere Vision ist ein umfassendes Lehr- und Forschungsprogramm, das auf geometrischen, algebraischen, stochastischen und analytischen Ansätzen beruht und durch effiziente numerische Implementierungen komplementiert wird. Die Doktorandinnen und Doktoranden werden an einem maßgeschneiderten Ausbildungsprogramm teilnehmen. Dieses enthält unter anderem Kompaktkurse, ein wöchentliches Seminar und ermutigt zu einer frühzeitigen Integration in die wissenschaftliche Community. Wir erwarten, dass das GK als ein Katalysator zur Etablierung dieser erfolgreichen DFG-Ausbildungskonzepte an der Fakultät für Mathematik dienen und zudem helfen wird, die Gleichstellungssituation zu verbessern.

Die Komplexitätsreduktion ist ein elementarer Aspekt der wissenschaftlichen Hintergründe der beteiligten Wissenschaftler. Die Kombination von Expertisen unterschiedlicher mathematischer Bereiche gibt dem GK ein Alleinstellungsmerkmal mit großen Chancen für wissenschaftliche Durchbrüche. Das GK wird Anknüpfungspunkte an zwei Fakultäten der OVGU, an ein Max Planck Institut und mehrere nationale und internationale Forschungsaktivitäten in verschiedenen wissenschaftlichen Communities haben. Die Studierenden im GK werden in einer Fülle von mathematischen Methoden und Konzepten ausgebildet und erlangen dadurch die Fähigkeit, herausfordernde Aufgaben zu lösen. Wir erwarten Erfolge in der Forschung und in der Ausbildung der nächsten Generation führender Wissenschaftler in Akademia und Industrie.
Kontakt

weitere Projekte

Die Daten werden geladen ...