UNITI - Unification of Treatments and Interventions for Tinnitus Patients
Projektleiter:
Projektbearbeiter:
Clara Puga,
Miro Schleicher,
Vishnu Unnikrishnan,
Dr.-Ing. Uli Niemann
Projekthomepage:
Finanzierung:
EU - HORIZONT 2020;
Das Projekt wird gefördert durch das EU-Rahmenprogramm für Forschung und Innovation Horizont 2020 (Grant Agreement Nr. 848261).
WE STAND UNIT(I)ED AGAINST TINNITUS!
Tinnitus ist die Wahrnehmung eines Phantom-Geräusches und die Reaktion der Betroffenen darauf. Obwohl viele Fortschritte erzielt wurden, bleibt Tinnitus ein wissenschaftliches und klinisches Rätsel mit hoher Prävalenz und hoher wirtschaftlicher Belastung. Er betrifft mehr als 10% der Allgemeinbevölkerung. Ca. 1% der Bevölkerung betrachtet Tinnitus als ihr wichtigstes Gesundheitsproblem. Eine große Vielfalt von Patientencharakteristika - einschließlich Genotypisierung, Ätiologie und Phänotypisierung - wird kaum verstanden, da integrierte Systemansätze noch fehlen. Obwohl die genetischen Ursachen von Tinnitus jahrzehntelang vernachlässigt wurden, haben jüngste Ergebnisse der genetischen Analyse in bestimmten Untergruppen (Geschlecht und Phänotyp) gezeigt, dass der bilaterale Tinnitus bei Männern eine Heritabilität von 0,68 erreicht hat. Über die Behandlung von Tinnitus gibt es derzeit keinen Konsens. Das übergeordnete Ziel von UNITI ist es, ein prädiktives Berechnungsmodell auf der Grundlage vorhandener und longitudinaler Daten zu liefern, das versucht, die Frage zu beantworten, welcher Behandlungsansatz für einen bestimmten Patienten auf der Grundlage bestimmter Parameter optimal ist. Klinische, epidemiologische, medizinische, genetische und audiologische Daten werden aus bestehenden Datenbanken analysiert. Es werden prädiktive Faktoren für verschiedene Patientengruppen extrahiert und ihre prognostische Relevanz in einer Randomized Controlled Trial (RCT) getestet, in der verschiedene Patientengruppen eine Kombination von Therapien durchlaufen, die auf das auditorische und zentrale Nervensystem abzielen.
Die AG von Prof. Spiliopoulou wird an Methoden des maschinellen Lernens arbeiten, für die Vorhersage des Erfolgs von Behandlungsverfahren, für die Analyse der Patient*innen- Compliance und für die Untersuchung der Wechselwirkungen von Compliance und Behandlungserfolg, sowie an die Ableitung von Phenotypen für Kliniken, die unterschiedliche Fragebögen und Behandlungen nutzen, aber trotzdem eine Vergleichbarkeit ihrer Vorgänge und ihrer Behandlungsvorgänge anstreben.
Das Projekt wird gefördert durch das EU-Rahmenprogramm für Forschung und Innovation Horizont 2020 (Grant Agreement Nr. 848261).
Tinnitus ist die Wahrnehmung eines Phantom-Geräusches und die Reaktion der Betroffenen darauf. Obwohl viele Fortschritte erzielt wurden, bleibt Tinnitus ein wissenschaftliches und klinisches Rätsel mit hoher Prävalenz und hoher wirtschaftlicher Belastung. Er betrifft mehr als 10% der Allgemeinbevölkerung. Ca. 1% der Bevölkerung betrachtet Tinnitus als ihr wichtigstes Gesundheitsproblem. Eine große Vielfalt von Patientencharakteristika - einschließlich Genotypisierung, Ätiologie und Phänotypisierung - wird kaum verstanden, da integrierte Systemansätze noch fehlen. Obwohl die genetischen Ursachen von Tinnitus jahrzehntelang vernachlässigt wurden, haben jüngste Ergebnisse der genetischen Analyse in bestimmten Untergruppen (Geschlecht und Phänotyp) gezeigt, dass der bilaterale Tinnitus bei Männern eine Heritabilität von 0,68 erreicht hat. Über die Behandlung von Tinnitus gibt es derzeit keinen Konsens. Das übergeordnete Ziel von UNITI ist es, ein prädiktives Berechnungsmodell auf der Grundlage vorhandener und longitudinaler Daten zu liefern, das versucht, die Frage zu beantworten, welcher Behandlungsansatz für einen bestimmten Patienten auf der Grundlage bestimmter Parameter optimal ist. Klinische, epidemiologische, medizinische, genetische und audiologische Daten werden aus bestehenden Datenbanken analysiert. Es werden prädiktive Faktoren für verschiedene Patientengruppen extrahiert und ihre prognostische Relevanz in einer Randomized Controlled Trial (RCT) getestet, in der verschiedene Patientengruppen eine Kombination von Therapien durchlaufen, die auf das auditorische und zentrale Nervensystem abzielen.
Die AG von Prof. Spiliopoulou wird an Methoden des maschinellen Lernens arbeiten, für die Vorhersage des Erfolgs von Behandlungsverfahren, für die Analyse der Patient*innen- Compliance und für die Untersuchung der Wechselwirkungen von Compliance und Behandlungserfolg, sowie an die Ableitung von Phenotypen für Kliniken, die unterschiedliche Fragebögen und Behandlungen nutzen, aber trotzdem eine Vergleichbarkeit ihrer Vorgänge und ihrer Behandlungsvorgänge anstreben.
Das Projekt wird gefördert durch das EU-Rahmenprogramm für Forschung und Innovation Horizont 2020 (Grant Agreement Nr. 848261).
Schlagworte
Behandlungserfolg, Compliance, Methode des maschinellen Lernens, Phenotypen, Tinitus
Kooperationen im Projekt
- Klinikum der Universität Regensburg (Koordinator)
- Katholieke Universiteit Leuven
- Ethniko kai Kapodistriako Panepistimio Athinon
- Charité Universitätsmedizin Berlin
- Servicio Andaluz de Salud
- Karolinska Institutet
- Universitätsklinikum Würzburg
- Institute of Communication and Computer Systems
- Instituto di Ricerche Pharmacologiche Mario Negri
- Vilabs LTD
- Sphynx Technology Solutions AG
- Zeincro
Kontakt
Prof. Myra Spiliopoulou
Otto-von-Guericke-Universität Magdeburg
Institut für Technische und Betriebliche Informationssysteme
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758967
weitere Projekte
Die Daten werden geladen ...