« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
An Immersed Boundary Method for Gas Flows around Moving Solids
Projektbearbeiter:
Prof. Dr. Michael Dumbser, Dr. rer. nat. Ferdinand Thein
Finanzierung:
Stiftungen - Sonstige;
This project considers a new diffuse interface model for the numerical simulation of compressible flows round fixed and moving solid bodies of arbitrary shape. The solids are assumed to be moving rigid bodies, without any elastic properties. The mathematical model is a simplified case of the seven-equation Baer-Nunziato model of compressible multi-phase flows. The resulting governing PDE system is a nonlinear system of hyperbolic conservation laws with non-conservative products. The geometry of the solid bodies is simply specified via a scalar field that represents the volume fraction of the fluid present in each control volume. This allows the discretization of arbitrarily complex geometries on simple uniform or adaptive Cartesian meshes. One main goal was to prove that at the material interface, i.e. where the volume fraction jumps from unity to zero, the normal component of the fluid velocity assumes the value of the normal component of the solid velocity. We were able to show that this result can be directly derived from the governing equations, either via Riemann invariants or from the generalized Rankine Hugoniot conditions according to the theory of Dal Maso, Le Floch and Murat.which justifies the use of a path-conservative approach for treating the nonconservative products.

Kooperationen im Projekt

Kontakt

weitere Projekte

Die Daten werden geladen ...