« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Sequenziell-adaptives Design
Finanzierung:
Haushalt;
Nicht-lineare Regression spielt eine wichtige Rolle zur adäquaten statistischen Modellierung von Daten, wenn der Einfluss erklärender Variablen auf die interessierende Zielvariable nicht durch einen einfachen linearen Ursache-Wirkungs-Zusammenhang beschrieben werden kann. In derartigen Modellen hängt die Informationsmatrix eines Versuchsplans (Design) vom Parametervektor ab, dessen wahrer Wert unbekannt ist. Häufig verwendete Ansätze der optimalen Versuchsplanung in dieser Situation sind lokal optimale Designs, Bayes-optimale Designs oder auch Minimax-Designs. Diese Konzepte benötigen und verwenden jedoch a-priori Kenntnisse über den wahren Parameterwert. Sequenziell-adaptive Designs hingegen sind lernende Verfahren. Sie sammeln Informationen über den wahren Parameterwert aus bereits gemachten Beobachtungen in einem sequenziellen Prozess und können daher auf a-priori Informationen verzichten. Dabei werden sequenziell adaptive Updates der Parameterschätzung auf Basis der bereits gemachten Beobachtungen berechnet, und mit Hilfe dieser wird das Design entsprechend um weitere Beobachtungen ergänzt. Ein populärer Algorithmus dieser Art ist der adaptive Wynn-Algorithmus zur asymptotischen Generierung eines D-optimalen Designs. In der gemeinsamen Arbeit von Freise, Gaffke und Schwabe (2019a) ist es gelungen, das seit Langem offene Problem der Konvergenz dieses Algorithmus zumindest für die in den Anwendungen wichtige Klasse der verallgemeinerten linearen Modelle (positiv) zu lösen. In der zweiten Arbeit von Freise, Gaffke und Schwabe (2019b) konnte dies auch auf eine weitere Klasse von nicht-linearen Modellen und auf andere Schätzverfahren erweitert werden. Gegenwärtig arbeiten die Autoren an der Analyse eines neuen Algorithmus zur asymptotischen Generierung D-optimaler Designs, bei dem gleichzeitig mehrere Beobachtungen hinzugefügt werden. Weitere Ziele des Projekts sind zum einen die Ausweitung der Untersuchungen auf weitere Klassen nicht-linearer Modelle sowie auf weitere Optimalitätskriterien. Zum anderen soll das praktische Konvergenzverhalten der Algorithmen erprobt und beurteilt werden.

Freise, F.; Gaffke, N.; Schwabe, R. (2019a). The adaptive Wynn-algorithm in generalized linear models with univariate response. Preprint arXiv:1907.02708

Freise, F.; Gaffke, N.; Schwabe, R. (2019b). Convergence of least squares estimators
in the adaptive Wynn algorithm for a class of nonlinear regression models. Preprint. arXiv:1909.03763

Kooperationen im Projekt

Publikationen

2019
Die Daten werden geladen ...
Kontakt

weitere Projekte

Die Daten werden geladen ...