Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Multimodale Erkennung von Druck- und Hitzeschmerzintensität
Der Fokus dieses Projektes ist die Verbesserung der Schmerzdiagnostik und des Monitorings von Schmerzzuständen. Durch die Nutzung von multimodalen Sensortechnologien und hocheffektiver Datenklassifikation kann eine reliable und valide automatisierte Schmerzerkennung ermöglicht werden. Um dieses Ziel zu erreichen, wird durch die Kombination neuer innovativer Methoden der Datenanalyse, der Mustererkennung und des maschinellen Lernens auf Daten eines experimentellen Protokolls eine vielversprechende Strategie der objektiven Schmerzerkennung entwickelt. Um Merkmale extrahieren und selektieren zu können, werden die experimentellen Daten seriell mit komplexen Filtern und Dekompensationsmethoden vorverarbeitet. Die so gewonnenen Merkmale sind die Voraussetzung für eine robuste automatisierte Erkennung der Schmerzintensität in Realzeit.
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Multimodale Erkennung von Druck- und Hitzeschmerzintensität
Der Fokus dieses Projektes ist die Verbesserung der Schmerzdiagnostik und des Monitorings von Schmerzzuständen. Durch die Nutzung von multimodalen Sensortechnologien und hocheffektiver Datenklassifikation kann eine reliable und valide automatisierte Schmerzerkennung ermöglicht werden. Um dieses Ziel zu erreichen, wird durch die Kombination neuer innovativer Methoden der Datenanalyse, der Mustererkennung und des maschinellen Lernens auf Daten eines experimentellen Protokolls eine vielversprechende Strategie der objektiven Schmerzerkennung entwickelt. Um Merkmale extrahieren und selektieren zu können, werden die experimentellen Daten seriell mit komplexen Filtern und Dekompensationsmethoden vorverarbeitet. Die so gewonnenen Merkmale sind die Voraussetzung für eine robuste automatisierte Erkennung der Schmerzintensität in Realzeit.