MEMoRIAL-M2.1 | Optimisation of novel vanadium-based high temperature materials
Projektleiter:
Finanzierung:
Forschergruppen:
Background
Due to the low density in combination with a high melting point, vanadium demonstrates a great lightweight potential for turbines in aircrafts or energy industry. Since vanadium as a structural material is in focus of research only recently, the effects of several alloying elements on the materials properties are not or insufficiently examined yet.
Objective
The investigation of the microstructure-property relationship in binary, ternary and quaternary V-based alloys in order to use the findings to improve high-temperature alloys based on V-Si-B.
Methods
By means of ingot metallurgy (arc-melting process), vanadium samples with different concentrations of alloying elements were manufactured. Resulting from this, single phase vanadium solid solutions (Vss), two-phase and three-phase alloys were produced. Microhardness measurements and compression tests were carried out to determine the mechanical properties in dependence on the alloying components. SEM (Scanning Electron Microscopy) and XRD (X-ray Diffraction) methods were used to examine the microstructure, to identify phases and to measure elements concentration in the respective phases.
Results
The combination between mechanical characteristics and microstructural investigations enables conclusions concerning the materials behavior and the efficiency of solid solution strengthening and second phase strengthening.
Conclusions
The elements Cr, Mo and Nb have a high potential for improving the microstructure property relationship in modern V-Si-B alloys.
Orignality
Basic research on the effects of various alloying elements in vanadium solid solution, as well as in promising ternary V-Si-B high temperature alloys.
Keywords
Vanadium-based alloys, microstructure-property-relationship, intermetallics, V-Si-B-X, vanadium solid solution phase
Due to the low density in combination with a high melting point, vanadium demonstrates a great lightweight potential for turbines in aircrafts or energy industry. Since vanadium as a structural material is in focus of research only recently, the effects of several alloying elements on the materials properties are not or insufficiently examined yet.
Objective
The investigation of the microstructure-property relationship in binary, ternary and quaternary V-based alloys in order to use the findings to improve high-temperature alloys based on V-Si-B.
Methods
By means of ingot metallurgy (arc-melting process), vanadium samples with different concentrations of alloying elements were manufactured. Resulting from this, single phase vanadium solid solutions (Vss), two-phase and three-phase alloys were produced. Microhardness measurements and compression tests were carried out to determine the mechanical properties in dependence on the alloying components. SEM (Scanning Electron Microscopy) and XRD (X-ray Diffraction) methods were used to examine the microstructure, to identify phases and to measure elements concentration in the respective phases.
Results
The combination between mechanical characteristics and microstructural investigations enables conclusions concerning the materials behavior and the efficiency of solid solution strengthening and second phase strengthening.
Conclusions
The elements Cr, Mo and Nb have a high potential for improving the microstructure property relationship in modern V-Si-B alloys.
Orignality
Basic research on the effects of various alloying elements in vanadium solid solution, as well as in promising ternary V-Si-B high temperature alloys.
Keywords
Vanadium-based alloys, microstructure-property-relationship, intermetallics, V-Si-B-X, vanadium solid solution phase
Anmerkungen
Wiss. Co-Betreuende / Scientific Co-Supervisors: Prof. Dr.-Ing. Thorsten Halle (OVGU:FMB/IWF)
Geräte im Projekt
- Pulverdiffraktometer Panalytical X'Pert Pro (Standardmessungen) und Bruker D8 Discover (in situ Messungen, röntgenographische Eigenspannungs- und Texturanalyse, streifender Einfall, Kleinwinkelstreuung)
- Quasistatische Zug- und Druckprüfmaschine
- Mikrohärteprüfer
- Rasterelektronenmikroskop (REM)
- Hochtemperatur -Schutzgasofen LORA
Kooperationen im Projekt
Publikationen
Die Daten werden geladen ...
Die Daten werden geladen ...
Kontakt
Prof. Dr.-Ing. habil. Manja Krüger
Otto-von-Guericke-Universität Magdeburg
Institut für Werkstoff- und Fügetechnik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6754516
weitere Projekte
Die Daten werden geladen ...