The use of diamond detectors for dosimetry and microdosimetry assessment in different therapeutic scenarios
Projektleiter:
Finanzierung:
Industrie;
In cancer treatment both ion-beam therapy and alpha radionuclide therapy base their effectiveness on the high ionization density provided by hadrons. However the stochastic nature of the hadron interaction in tissue, and the complexity of the interaction patterns
require a better description of the radiobiological effect of hadrons in tissue that cannot be
adequately reflected, as in conventional radiation therapy, by a single dosimetric quantity,
e.g. mean absorbed dose to target volume. MedAustron, the Austrian centre for ion-beam therapy, in collaboration with the University of Rome, Tor Vergata is developing semi-conductor diamond detectors for dosimetry and microdosimetry in ion-beam therapy. The potential of such (micro)dosimeters with respect to alpha radionuclide target therapy, 90Y radio-embolization, and other treatment modalities is under investigation in the present project.
require a better description of the radiobiological effect of hadrons in tissue that cannot be
adequately reflected, as in conventional radiation therapy, by a single dosimetric quantity,
e.g. mean absorbed dose to target volume. MedAustron, the Austrian centre for ion-beam therapy, in collaboration with the University of Rome, Tor Vergata is developing semi-conductor diamond detectors for dosimetry and microdosimetry in ion-beam therapy. The potential of such (micro)dosimeters with respect to alpha radionuclide target therapy, 90Y radio-embolization, and other treatment modalities is under investigation in the present project.
Schlagworte
alpha radionuclide therapy, diamond detector, dosimetry, ion beam therapy
Kooperationen im Projekt
Kontakt
Prof. Dr. Christoph Hoeschen
Otto-von-Guericke-Universität Magdeburg
Fakultät für Elektrotechnik und Informationstechnik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6718863
weitere Projekte
Die Daten werden geladen ...