Markovketten auf Fasergraphen
Projektleiter:
Projektbearbeiter:
Windisch
Finanzierung:
Stiftungen - Sonstige;
In diesem Promotionsprojekt untersuchen wir das Verhalten von Zufallsbewegungen auf Graphen, deren Knoten ganzzahlige Lösungen einer linearer Gleichung sind. Diese sogenannten Fasergraphen tauchen in zahlreichen Anwendungen der Optimierung und Statistik auf und ihre Struktur kann mit Hilfsmitteln aus der Kommutativen Algebra und Algebraischen Geometrie studiert werden. Während Zufallsbewegungen auf Graphen im Allgemeinen hinreichend gut untersucht wurden, ist im speziellen Falle von Fasergraphen beispielsweise noch völlig unverstanden, wie schnell diese Zufallsbewegungen gegen ihre stationäre Verteilung konvergieren. In diesem Projekt werden wir Schranken für die Konvergenzrate ausfindig machen, die im wesentlichen nur von Eigenschaften des zugrundeliegenden linearen Gleichungssystems abhängen.
Schlagworte
Algebra, Markovkette, Statistik, torisches Ideal
Kontakt
Prof. Dr. Thomas Kahle
Otto-von-Guericke-Universität Magdeburg
Institut für Algebra und Geometrie
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6754857
weitere Projekte
Die Daten werden geladen ...