Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Bildbasierte Emotionserkennung und -quantifizierung auf der Grundlage der Datenfusion
Analog zur Mensch-Mensch-Kommunikation wird die Mensch-Maschine-Interaktion als Interaktion zweier Agenten betrachtet, die kooperativ ein Problem lösen, Wünsche und Ziele ihres Gegenübers erkennen, sich an sie anpassen sowie sich des Diskurskontextes und seiner Regeln bewusst sind. Der Versuch diese Aspekte von Interaktionen explizit zu erfassen und zu modulieren, sind die Aufgaben einer adaptiven Benutzungsschnittstelle. Dabei wird die Schnittstelle durch Wissen über den momentanen Status, das Ziel und den emotionalen Zustand des individuellen Benutzers dynamisch angepasst. Hierzu reicht die typische Verarbeitungskette von der Merkmalsfindung und -extraktion bis zur Emotionsklassifikation und -quantifizierung. Die Kombination von Bilddaten mit Sprachdaten zur Segmentierungserfassung zwecks Mimikerkennung im Mehrpersonenszenario ist hierbei ein viel versprechender neuartiger Ansatz, der nicht nur eine robuste Klassifikation von unterschiedlichsten Arten von statischen und dynamischen Gesichtsausdrücken, sondern auch die Echtzeit-Adaption der Benutzungsschnittstelle an die aktuellen Benutzeraktionen erlaubt.
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Bildbasierte Emotionserkennung und -quantifizierung auf der Grundlage der Datenfusion
Analog zur Mensch-Mensch-Kommunikation wird die Mensch-Maschine-Interaktion als Interaktion zweier Agenten betrachtet, die kooperativ ein Problem lösen, Wünsche und Ziele ihres Gegenübers erkennen, sich an sie anpassen sowie sich des Diskurskontextes und seiner Regeln bewusst sind. Der Versuch diese Aspekte von Interaktionen explizit zu erfassen und zu modulieren, sind die Aufgaben einer adaptiven Benutzungsschnittstelle. Dabei wird die Schnittstelle durch Wissen über den momentanen Status, das Ziel und den emotionalen Zustand des individuellen Benutzers dynamisch angepasst. Hierzu reicht die typische Verarbeitungskette von der Merkmalsfindung und -extraktion bis zur Emotionsklassifikation und -quantifizierung. Die Kombination von Bilddaten mit Sprachdaten zur Segmentierungserfassung zwecks Mimikerkennung im Mehrpersonenszenario ist hierbei ein viel versprechender neuartiger Ansatz, der nicht nur eine robuste Klassifikation von unterschiedlichsten Arten von statischen und dynamischen Gesichtsausdrücken, sondern auch die Echtzeit-Adaption der Benutzungsschnittstelle an die aktuellen Benutzeraktionen erlaubt.