Thyroid Nodule Classification for Physician Decision Support (INKA Healthtec Innolab @ UMMD)
Projektleiter:
Projektbearbeiter:
Elmer Ataide,
Alfredo Illanes,
Prof. Dr. Michael Friebe
Projekthomepage:
Finanzierung:
Stiftungen - Sonstige;
The classification of thyroid nodules using ultrasound (US) imaging is done using the Thyroid Imaging Reporting and Data System (TIRADS) guidelines that classify nodules based on visual and textural characteristics. These are composition, shape, size, echogenicity, calcifications, margins, and vascularity. This work aims to reduce subjectivity in the current diagnostic process by using geometric and morphological (G-M) features that represent the visual characteristics of thyroid nodules to provide physicians with decision support. A total of 27 G-M features were extracted from images obtained from an open-access US thyroid nodule image database. 11 significant features in accordance with TIRADS were selected from this global feature set. Each feature was labeled (0 = benign and 1 = malignant) and the performance of the selected features was evaluated using machine learning (ML). G-M features together with ML resulted in the classification of thyroid nodules with a high accuracy, sensitivity and specificity. The results obtained here were compared against state-of the-art methods and perform significantly well in comparison. Furthermore, this method can act as a computer aided diagnostic (CAD) system for physicians by providing them with a validation of the TIRADS visual characteristics used for the classification of thyroid nodules in US images.
Kooperationen im Projekt
Publikationen
Die Daten werden geladen ...
Kontakt

Dr.-Ing. Axel Boese
Otto-von-Guericke-Universität Magdeburg
Innovation Laboratory for Image Guided Therapy
Leipziger Str.44
39120
Magdeburg
Tel.:+49 391 66728120
weitere Projekte
Die Daten werden geladen ...