« Projekte
Optimales Design für statistische Modelle mit zensierten Daten
Projektbearbeiter:
Dipl. Math. Dennis Schmidt
Finanzierung:
Fördergeber - Sonstige;
In vielen technischen und biologischen Bereichen spielt die statistische Analyse zensierter Daten eine zunehmende Rolle. Diese Zensierungen können deterministisch (feste Studiendauer, Nachweisgrenzen) oder zufallsgesteuert (zufällige Studiendauer, zufälliges Ausscheiden aus der Studie) sein. Die beobachteten, teilweise zensierten Größen können zusätzlich von weiteren Einflussfaktoren (Behandlungen und Kovariablen) abhängen, was beispielsweise über ein "proportional hazards"-Modell beschrieben werden kann.
Während die statistische Analyse derartiger Daten schon relativ weit entwickelt ist, gibt es relativ wenig Resultate zur effizienten Planung derartiger Studien oder Experimente. Ziel des vorliegenden Projekts ist es, für eine Reihe von relevanten Modellsituationen optimale oder zumindest effiziente Designs zu charakterisieren und analytisch zu bestimmen, um Anleitungen für eine möglichst effektive Ausnutzung der vorhandenen Ressourcen beim Vorliegen zensierter Daten bereit zu stellen.

Schlagworte

Statistik, optimales Design, zensierte Daten, Überlebenszeitanalyse

Kooperationen im Projekt

Kontakt

weitere Projekte

Die Daten werden geladen ...