Entwicklung eines Test zur Diagnostik von Immunkompetenz bei SeniorInnen mit Hilfe von Data-mining Methoden (ImmunLearning)
Projektleiter:
Projektbearbeiter:
M.Sc. Noor Jamaludeen,
M.Sc. Christian Beyer
Finanzierung:
Während das Altern ein unabwendbarer Prozess aller Menschen ist, gibt es in der Geschwindigkeit der damit einhergehenden funktionellen Veränderungen enorme Unterschiede. Auch das Immunsystem ist dem Alterungsprozess unterworfen. Die Evolution hat das Immunsystem generiert, um eine schnelle und spezifische Abwehr von Pathogenen abzusichern. Mit dem Alter sinkt diese Schlagkraft und insbesondere der Verlauf einer Infektion ist dramatischer bei vielen Senioren, oft mit tödlichem Ausgang. Beispiele sind die Infektion durch Staphylococcus aureus oder die Lungenentzündung - eine häufige und oft tödliche Folge von kurzzeitiger Bettlägerigkeit. Auslöser sind in den meisten Fällen Bakterien, oft Pneumokokken, können aber auch Infektionen durch Viren, Pilze oder Parasiten sein. Ein Testsystem zur Einschätzung der Immunkompetenz gegen bestimmte Pathogene könnte frühzeitig Risikopersonen identifizieren. Als Konsequenz könnten z. B. Medikamente umgestellt werden, bei medizinischen Eingriffen oder Therapien von chronischen Entzündungen oder bei Anwendung der immunbasierten Krebstherapie könnte die Therapie angepasst werden, von Implantaten könnte ganz abgesehen werden. Die angepasste Therapie könnte lebensrettend sein und Autonomie im Alter absichern.
In diesem Vorhaben analysieren wir die Daten von Testpersonen mit hoher versus niedriger Immunkompetenz mit Methoden des maschinellen Lernens und identifizieren Muster zu identifizieren, die für Senior*innen mit hoher bzw. niedriger Immunkompetenz charakteristisch sind. Zudem untersuchen wir Ansätze zur Messung von Zytokinwerten mit Hilfe von low-end Smartphone Tehnologien.
In diesem Vorhaben analysieren wir die Daten von Testpersonen mit hoher versus niedriger Immunkompetenz mit Methoden des maschinellen Lernens und identifizieren Muster zu identifizieren, die für Senior*innen mit hoher bzw. niedriger Immunkompetenz charakteristisch sind. Zudem untersuchen wir Ansätze zur Messung von Zytokinwerten mit Hilfe von low-end Smartphone Tehnologien.
Kooperationen im Projekt
Kontakt
Prof. Myra Spiliopoulou
Otto-von-Guericke-Universität Magdeburg
Institut für Technische und Betriebliche Informationssysteme
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758967
weitere Projekte
Die Daten werden geladen ...