« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Optimizing graph databases focussing on data processing and integration of machine learning for large clinical and biological datasets
Projektbearbeiter:
MSc. Daniel Walke, MSc. Daniel Micheel
Finanzierung:
Deutsche Forschungsgemeinschaft (DFG) ;
Graphdatenbanken stellen eine effiziente Technik zur Speicherung und zum Zugriff auf hochgradig
verknüpfte Daten unter Verwendung einer Graphstruktur dar, wie z.B. Verbindungen zwischen Messdatenzu Umweltparametern oder klinischen Patientendaten. Die flexible Knotenstruktur macht es einfach, dieErgebnisse verschiedener Untersuchungen hinzuzufügen. Dies reicht von einfachen Blutdruckmessungenüber die neuesten CT- und MRT-Scans bis hin zu hochauflösenden Omics-Analysen (z.B. von Tumorbiopsien,Darmmikrobiom-Proben). Allerdings wird das volle Potenzial der Datenverarbeitung und -analyse mittelsGraphdatenbanken in biologischen und klinischen Anwendungsfällen noch nicht vollständig ausgeschöpft.Insbesondere die riesige Menge an miteinander verbundenen Daten, die geladen, verarbeitet und analysiertwerden müssen, führt zu zu langen Verarbeitungszeiten, um in klinische Arbeitsabläufe integriert werdenzu können. Um dieses Ziel zu erreichen sind neuartige Optimierungen von Graph-Operatoren sowie eine
geeignete Integration von Analyseansätzen notwendig.
Dieses Projekt zielt darauf ab, die oben genannten Probleme in zwei Richtungen zu lösen: (i) Vorschlag
geeigneter Optimierungen für Graphdatenbank-Operationen, auch unter Einsatz moderner Hardware, und(ii) Integration von Algorithmen des maschinellen Lernens für eine einfachere und schnellere Analyse der biologischenDaten. Für die erste Richtung untersuchen wir den Stand der Technik von Graphdatenbanksystemen
und deren Speicherung sowie ihr Verarbeitungsmodell. Anschließend schlagen wir Optimierungen für effizienteoperationale und analytische Operatoren vor. Für die zweite Richtung stellen wir uns vor, Algorithmen desmaschinellen Lernens näher an ihre Datenlieferanten - die Graphdatenbanken - heranzubringen. Zu diesemZweck füttern wir in einem ersten Schritt die Algorithmen des maschinellen Lernens direkt mit dem Graphenals Eingabe, indem wir geeignete Graphenoperatoren entwerfen. In einem zweiten Schritt integrieren wir dasmaschinelle Lernen direkt in die Graphdatenbank, indem wir spezielle Knoten hinzufügen, die das Modell des Algorithmus für maschinelles Lernen repräsentieren. Die Ergebnisse unseres Projekts sind verbesserte Operatoren, die sowohl moderne Hardware als auch Integrationskonzepte für Algorithmen des maschinellen Lernens nutzen. Unsere allgemein entwickeltenAnsätze werden das Verarbeiten und Analysieren riesiger Graphen in einer Fülle von Anwendungsfällen überunseren angestrebten Anwendungsfall der biologischen und klinischen Datenanalyse hinaus vorantreiben.

Kooperationen im Projekt

Kontakt

weitere Projekte

Die Daten werden geladen ...