Das angestrebte Projekt befasst sich mit den Herausforderungen bei der Entwicklung von mobilen Funkverbindungen mit hoher Datenrate im Millimeterwellenbereich. Hierbei führt die Zunahme der Freiraumdämpfung in Kombination mit dem vermehrten Auftreten von Sauerstoff- und Wasserresonanzen zu einer sehr knappen Leistungsübertragungsbilanz. Daher ist zum Erreichen eines genügenden Signal-Rauschabstandes der Einsatz von hochdirektivenAntennen unabdingbar. Zur Aufrechterhaltung der Funkverbindung ist,besonders bei mobilen Anwendungen, eine Nachführung der Antennenkeule notwendig. Da mechanisch gesteuerte Antennen im Allgemeinen sperrig, schwer, wartungsintensiv und teuer sind, geht man mehr und mehr dazu über, die mechanischen Komponenten durch elektronische Steuermechanismen zu ersetzen. Die Implementation dieser phasengesteuerten Gruppenantennen ist allerdings komplex und teuer, wenn jede Einzelantenne einer NxM Antennenmatrix über einen separaten HF-Kanal angesteuert wird, umdie notwendige Amplituden- und Phasenbelegung im Basisband einzustellen. Vielversprechender ist, die Phasenbelegung im HF-Bereich mittels passiver Phasenschieber zu realisieren, was die Zahl unabhängiger HF-Kanäle drastisch reduziert. In diesem Projekt wird die innovative Anwendung von Flüssigkristall als steuerbares Material in Kombination mit aktiven Komponenten zur Realisierung einer hybriden Antennenmatrix angestrebt. Hierbei spielen die Anforderungen an die Phasenschieber eine entscheidende Rolle. Da sie jedem Antennenelement zugewiesen sind, müssen sie kompakt genug sein, um in eine Einheitszelle der Antennenmatrix zu passen. Gleichzeitig sollten sie kompakt, flach und verlustarm sein, um den Anforderungen für mobile Anwendungen gerecht zu werden. Des Weiteren muss der erzeugte Phasenhub groß genug sein, um den anwendungsspezifischen Steuerbereich abzudecken. Trotz der guten Verlusteigenschaften des LCs ist es schwierig, allen oben genannten Anforderungen zugleich gerecht zu werden. Daher wird in diesem Projekt zum ersten Mal die Kombination aktiver Komponenten mit steuerbaren passiven LC basierten Phasenschiebern angestrebt, um die hohen Anforderungen an die Phasenschieber zu entschärfen. DesWeiteren ermöglicht dieses Konzept durch die Anwendung von steuerbaren Verstärkern auch die uneingeschränkte Fernfeldsynthese(d.h. Steuerung der Phasen- und Amplitudenbelegung). Um die oben genannten Ziele zur erreichen, wird zuerst ein systematisches Verfahren zum Entwurf hybrider/aktiver phasengesteuerter Gruppenantennen entwickelt. Die passiven Phasenschieber werden mittels innovativer und vielversprechender LC-Technik realisiert. Zur Steigerung der Systemperformanz bzgl. SNR, Größe und Leistungsaufnahme, werden aktive Sende-Empfangs-Schaltungen in das Antennenpanel integriert. Die Herausforderungen werden insbesondere in der Anpassung des Entwurfsverfahrens auf dieses Konzept als auch in der Integration von aktiven und LC basierten Komponenten liegen.
Hybrid Phased Array Antenna System for High Data Rate mm-Wave Wireless Communication (HyPAA)
The aimed project addresses the challenges faced, when exhibiting high data rate mobile wireless communication links in the millimeter-wave band. The increase in free-space path loss and oxygen absorption in combination with a large bandwidth leads to a very stringent link budget. To achieve a reasonable high signal to noise ratio, the use of high gain antenna systems is inevitable. However, highly directive communication links necessitate for the ability to dynamically adjust the orientation of the antennas main beam. Thereby, the trend is towards replacing any mechanical component byelectronic steering mechanisms. Mechanically steered antennas are in general bulky, heavy, maintenance intensive and hence costly, making them unattractive for mobile applications and consumer products. However, the implementation of a phased array system comprising NxM array elements with the same amount of independentRF channels in order to apply the necessary phase and amplitude weighting in the baseband is as well complex, bulky and cost intensive. A more promising approach is to perform the phase weighting in the RF domain utilizing passive phase shifters, which reduces the amount of independent RF channels. This project focuses on the innovative application of liquid crystal as tunable material together with active components for the realization of hybrid array antenna systems. Here, one challenge lies in the requirements placed on the phase shifting component. Due to their assignment to each array element, they have to be that compact to fit behind one antenna. At the same time, they are required to be compact, flat and low-loss to meet the overall requirements for mobile applications. Further, the phase shift introduced has to be large enough to cover the angular steering range for the specific application. Although the low-loss properties of LC, it is still difficult to meet the above mentioned criteria altogether, especially concerning the losses. Therefore, this project aims for a new approach by combining, for the first time, active components and tunable passive LC phase shifters todiminish the strong requirements placed on the phase shifters. Further, the integration of variable gain amplifiers in such a system enables the possibility for full beam synthesis (i.e. phase and amplitude weighting). To accomplish the above mentioned goals, a systematic technique to design hybrid/active phased arrays will be developed. The passive phase shifters will be realized in innovative and promising low-loss LC technology. Transceiver ICs will be integrated and packaged into the antenna panel in order to increase the system performance in terms of SNR, size and power consumption. The challenges will be, to incorporate this concept into the design procedure as well as the integration of active with LC based passive components.