Entwicklung eutektischer Refraktärmetalllegierungen für Anwendungen unter extremen Bedingungen
Projektleiter:
Finanzierung:
Haushalt;
Der Schwerpunkt des Projektes ist es, ein umfassendes Verständnis von refraktärmetallbasierten RM-Si-B-Systems zu gewinnen. Dies beinhaltet die Phasenentstehung und -umwandlung während der Erstarrung, sowie die Phasenstabilität und Umwandlungen im Gleichgewichtszustand. Dabei wird gezielt nach ternären Eutektika in den metallreichen Teil der RM-Si-B-Systems geforscht. Hierzu werden die chemischen Zusammensetzungen der beteiligten Phasen mittels thermodynamischer Berechnungen identifiziert und experimentell validiert (z.B. mittels WDX- oder Mikrosondenmessungen). Als vorteilhaft werden ternäre Eutektika hinsichtlich ihrer für den Legierungsbereich niedrigsten Schmelzpunktes sowie die mit der Mikrostruktur im Zusammenhang stehenden besonderen mechanischen Eigenschaften erachtet. Des Weiteren lässt sich über die (prozessabhängigen) Abkühlbedingungen die eutektische Mikrostruktur gut kontrollieren und damit gezielt Einfluss auf die mechanischen Eigenschaften solcher Legierungen nehmen. Das kann beispielweise über gerichtete Erstarrung solcher RM-basierten eutektischen Systeme erreicht werden. Ziel ist es, RM-Si-B-Legierung zu entwickeln, welche gegenüber Ni-Basis verbesserte spezifische Festigkeitseigenschaften bei Temperaturen zwischen 600 °C und 1500 °C (mögliche Einsatzfenster eutektischer RM-Si-B-Systeme) aufweist. Dabei stehen besonders Mo- und V-basierte Legierungssystem im Fokus der wissenschaftlichen Arbeit.
Ähnlich wie bei Mo-Si-B-Werkstoffen ist eine technische Anwendung von beispielsweise Vanadium-Silizid-Legierungen mit etwa 30 bis 70% V(MK)-Phase und komplementären Silizidphasen am aussichtsreisten und wahrscheinlichsten. Ein genaues Verständnis der Mikrostruktur-Eigenschaftsbeziehungen in Kombination mit der Thermodynamik RM-reicher RM-Si-B-Systems ist daher essenziell und es wird ein möglichst ganzheitlicher Materialentwicklungsansatz verfolgt. Dieser umfasst die Legierungsauswahl und Werkstoffsynthese (Lichtbogenofen, gerichtete Erstarrung, Wärmebehandlungen), die Charakterisierung der Mikrostrukturentwicklung und mechanischer Eigenschaften (temperaturabhängige Druck- und Kriechversuche) sowie die Entwicklung wirksamer Oxidationsschatzmechanismen (über präkeramische Polymere und Packzementieren) für die RM-Si-V-Legierungssysteme.
Ähnlich wie bei Mo-Si-B-Werkstoffen ist eine technische Anwendung von beispielsweise Vanadium-Silizid-Legierungen mit etwa 30 bis 70% V(MK)-Phase und komplementären Silizidphasen am aussichtsreisten und wahrscheinlichsten. Ein genaues Verständnis der Mikrostruktur-Eigenschaftsbeziehungen in Kombination mit der Thermodynamik RM-reicher RM-Si-B-Systems ist daher essenziell und es wird ein möglichst ganzheitlicher Materialentwicklungsansatz verfolgt. Dieser umfasst die Legierungsauswahl und Werkstoffsynthese (Lichtbogenofen, gerichtete Erstarrung, Wärmebehandlungen), die Charakterisierung der Mikrostrukturentwicklung und mechanischer Eigenschaften (temperaturabhängige Druck- und Kriechversuche) sowie die Entwicklung wirksamer Oxidationsschatzmechanismen (über präkeramische Polymere und Packzementieren) für die RM-Si-V-Legierungssysteme.
Geräte im Projekt
Kooperationen im Projekt
Publikationen
Die Daten werden geladen ...
Die Daten werden geladen ...
Kontakt
Dr. Georg Hasemann
Otto-von-Guericke-Universität Magdeburg
Institut für Werkstoff- und Fügetechnik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 54551
weitere Projekte
Die Daten werden geladen ...