Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Unterschiede im Sprechverhalten von Nutzern zwischen Mensch-Maschine- und Mensch-Mensch-Interaktionen ("Alexa-Studien")
Dieses interdisziplinäre Projekt befasst sich aus ingenieurswissenschaftlicher und psychologischer Perspektive mit Grundlagenforschung zum Sprechverhalten von Menschen mit Maschinen. Speziell wird der Frage nachgegangen, inwieweit sich das Sprechverhalten von Menschen in zwischenmenschlichen Interaktionen vom Sprechverhalten in Interaktionen mit technischen Systemen unterscheidet. Hierfür werden mehrere Studien durchgeführt, die den eigens entwickelten Datenkorpus, den Voice Assistant Conversation Corpus (VACC), der auf Interaktionen mit Amazons Alexa basiert, nutzen. Es werden verschiedene Interaktionssituationen (formal vs. informal, dyadisch vs. triadisch) untersucht und Vergleiche zwischen objektiven Messungen akustischer und lexikalischer Sprechmerkmale, Selbstberichten der Nutzer und Fremdratings durchgeführt. Übergeordnetes Ziel ist die Identifikation eines Sets differenzierender Sprachmerkmale, das es sprachgesteuerten technischen Systemen ermöglicht zu detektieren, ob sie vom Nutzer adressiert werden oder nicht. Weiterführend soll untersucht werden, wie das nutzerseitige Erleben des technischen Systems (werden ihm eher menschliche oder eher technische Eigenschaften und Fähigkeiten zugeschrieben) das Sprechverhalten des Nutzers beeinflussen.
Differences in users' speech behaviour between human-machine and human-human interactions ("Alexa studies")
This interdisciplinary project deals with fundamental research on the speech behaviour of people with technical systems from an engineering and a psychological perspective. In particular, it is investigated to what extent the speech behaviour of humans in interpersonal interactions differs from the speech behaviour of humans in interactions with technical systems. For this purpose, several studies will be carried out using the specially developed data corpus, the Voice Assistant Conversation Corpus (VACC), which is based on interactions with Amazon's Alexa. Different interaction situations (formal vs. informal, dyadic vs. triadic) are investigated and comparisons between objective measurements of acoustic and lexical speech characteristics, user self-reports and external ratings are made. The major goal is to identify a set of distinctive speech features that will enable voice-controlled technical systems to detect whether they are addressed by the user or not. In addition, it will be investigated how the user's experience of the technical system (attributed more to human or more to technical characteristics and abilities) influences the user's speech behaviour.
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Unterschiede im Sprechverhalten von Nutzern zwischen Mensch-Maschine- und Mensch-Mensch-Interaktionen ("Alexa-Studien")
Dieses interdisziplinäre Projekt befasst sich aus ingenieurswissenschaftlicher und psychologischer Perspektive mit Grundlagenforschung zum Sprechverhalten von Menschen mit Maschinen. Speziell wird der Frage nachgegangen, inwieweit sich das Sprechverhalten von Menschen in zwischenmenschlichen Interaktionen vom Sprechverhalten in Interaktionen mit technischen Systemen unterscheidet. Hierfür werden mehrere Studien durchgeführt, die den eigens entwickelten Datenkorpus, den Voice Assistant Conversation Corpus (VACC), der auf Interaktionen mit Amazons Alexa basiert, nutzen. Es werden verschiedene Interaktionssituationen (formal vs. informal, dyadisch vs. triadisch) untersucht und Vergleiche zwischen objektiven Messungen akustischer und lexikalischer Sprechmerkmale, Selbstberichten der Nutzer und Fremdratings durchgeführt. Übergeordnetes Ziel ist die Identifikation eines Sets differenzierender Sprachmerkmale, das es sprachgesteuerten technischen Systemen ermöglicht zu detektieren, ob sie vom Nutzer adressiert werden oder nicht. Weiterführend soll untersucht werden, wie das nutzerseitige Erleben des technischen Systems (werden ihm eher menschliche oder eher technische Eigenschaften und Fähigkeiten zugeschrieben) das Sprechverhalten des Nutzers beeinflussen.