« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Optimierung der Reliabilität und Spezifität der automatisierten multimodalen Erkennung von Druck- und Hitzeschmerzintensität
Finanzierung:
Deutsche Forschungsgemeinschaft (DFG) ;
Derzeit gebräuchliche Methoden zur klinischen Schmerzmessung sind nur begrenzt reliabel und valide, sie sind zeitaufwendig und können nur bedingt bei Patienten mit eingeschränkten verbalen Fähigkeiten eingesetzt werden. Wenn eine valide Schmerzmessung nicht möglich ist, kann dies zu stressbedingtem kardiologischem Risiko, zu Über- oder Unterversorgung von Analgetika und zu einer suboptimalen Behandlung von akutem und chronischem Schmerz führen.

Der Fokus dieses Projektes ist daher die Verbesserung der Schmerzdiagnostik und des Monitorings von Schmerzzuständen. Durch die Nutzung von multimodalen Sensortechnologien und hocheffektiver Datenklassifikation kann eine reliable und valide automatisierte Schmerzerkennung ermöglicht werden. Um dieses Ziel zu erreichen, wird durch die Kombination neuer innovativer Methoden der Datenanalyse, der Mustererkennung und des maschinellen Lernens auf Daten eines experimentellen Protokolls eine vielversprechende Strategie der objektiven Schmerzerkennung entwickelt. Biomedizinische, visuelle und Audiodaten werden unter experimentellen und kontrollierten Schmerzapplikationen bei gesunden Versuchspersonen gemessen. Um Merkmale extrahieren und selektieren zu können, werden die experimentellen Daten seriell mit komplexen Filtern und Dekompensationsmethoden vorverarbeitet. Die so gewonnenen Merkmale sind die Voraussetzung für eine robuste automatisierte Erkennung der Schmerzintensität in Realzeit.

Schlagworte

Monitorings von Schmerzzuständen, Schmerzdiagnostik, Schmerzerkennung, klinische Schmerzmessung
Kontakt

weitere Projekte

Die Daten werden geladen ...