Optimales Design bei zufälligen und festen Blockeffekten II
Projektleiter:
Projektbearbeiter:
Jesús Alonso Cabrera
Finanzierung:
Fördergeber - Sonstige;
Auf Grund ökonomischer und ethischer Gründe besteht ein bedeutender Bedarf für optimale bzw. zumindest effiziente Designs in statistischen Experimenten. Dies bedeutet, dass experimentelle Einstellungen derart gewählt werden sollten, dass unter Verwendung möglichst weniger Ressourcen maximale Information erzielt werden kann.
In der Literatur gibt es im Wesentlichen zwei konkurrierende Ansätze: Der eine basiert auf kombinatorischen Überlegungen, die am besten für statistische Modelle der Varianzanalyse geeignet sind, bei denen die experimentellen Einstellungen nur wenige Faktor-Kombinationen annehmen können. der andere basiert auf analytschen Methoden und verwendet Methoden der konvexen Optimierung in einer quantitativ-stetigen Umgebung.
Das Ziel des vorliegenden Projektes ist es, diese beiden Konzepte zusammenzubringen in dem Sinnen, dass wir (stetige) analytische Methoden auf Modelle der Varianzanalyse mit typischerweise diskreter Struktur wie Block-Effekten übertragen wollen. Darüber hinaus wollen wir die analytischen Methoden, die für Modelle mit reinen festen Effekten entwickelt wurden, auf die praktisch relevanteren übertragen, bei denen individuelle Effekte der sogenannten Blöcke durch Randomisierung entstehen, was in der Literatur oft vernachlässigt wird.
In der Literatur gibt es im Wesentlichen zwei konkurrierende Ansätze: Der eine basiert auf kombinatorischen Überlegungen, die am besten für statistische Modelle der Varianzanalyse geeignet sind, bei denen die experimentellen Einstellungen nur wenige Faktor-Kombinationen annehmen können. der andere basiert auf analytschen Methoden und verwendet Methoden der konvexen Optimierung in einer quantitativ-stetigen Umgebung.
Das Ziel des vorliegenden Projektes ist es, diese beiden Konzepte zusammenzubringen in dem Sinnen, dass wir (stetige) analytische Methoden auf Modelle der Varianzanalyse mit typischerweise diskreter Struktur wie Block-Effekten übertragen wollen. Darüber hinaus wollen wir die analytischen Methoden, die für Modelle mit reinen festen Effekten entwickelt wurden, auf die praktisch relevanteren übertragen, bei denen individuelle Effekte der sogenannten Blöcke durch Randomisierung entstehen, was in der Literatur oft vernachlässigt wird.
Schlagworte
Statistik, Versuchsplanung, lineare gemischte Modelle, optimales Design
Kontakt
Prof. Dr. Rainer Schwabe
Otto-von-Guericke-Universität Magdeburg
Institut für Mathematische Stochastik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758304
weitere Projekte
Die Daten werden geladen ...