Data Mining Methoden zur Unterstuetzung der OP-Planung
Projektleiter:
Projektbearbeiter:
Rene Schult
Finanzierung:
Haushalt;
Krankenhäuser stehen heutzutage unter einem hohen ökonomischen Druck. Über 60% der Patienten eines Krankenhauses werden im OP-Bereich behandelt, deswegen ist dieser Bereich besonders ressourcenintensiv. Die Verbesserung der Planung in diesem Bereich kann für Krankenhäuser sowohl monetäre, als auch nicht-monetäre Vorteile bringen. Diese können sich unter Anderem aus der Reduzierung der Personal-Leerzeiten, oder aus der Vermeidung der ungeplanten Überstunden ergeben.
In der vorliegenden Arbeit verwenden wir Data-Mining-Methoden, um die Dauer einer zukünftigen Operation vorherzusagen. Dazu wurden anonymisierte Daten aus Narkoseprotokollen aus dem Universitätsklinikum in Magdeburg A. ö. R. verwendet. Die Vorhersage basiert auf Patientendaten wie z.B. auf dem Alter, Gewicht und der Erkrankung des Patienten und auf den Daten über das Krankenhauspersonal. Das entwickelte Modell ist zwar für ein bestimmtes Krankenhaus spezifisch, aber die allgemeine Vorgehensweise ist generisch und lässt sich somit auf andere Krankenhäuser übertragen. Unser Ansatz umfasst unter Anderem die Diskretisierung der Operationsdauer, die als das Zielattribut verwendet wird, und anschließend die Klassifikation der Operationsdaten unter Nutzung von mehreren Data-Mining-Algorithmen. Das beste Modell wird im Laufe einer Evaluierungsphase mit einer von uns entwickelten Methode gewählt. Um die Verwendung des Modells für die Nutzer aus dem Universitätsklinikum zu ermöglichen, wurde eine Software entwickelt, die das Modell implementiert.
Die auf diese Weise entwickelte Prognose der Operationsdauer kann die Operationsplanung in einem Krankenhaus wesentlich vereinfachen und verbessern. Dadurch lassen sich die Wartezeiten sowohl für Patienten, als auch für das Krankenhauspersonal verringern, woraus die Kostenersparnisse und die Erhöhung der Patientenzufriedenheit resultieren.
In der vorliegenden Arbeit verwenden wir Data-Mining-Methoden, um die Dauer einer zukünftigen Operation vorherzusagen. Dazu wurden anonymisierte Daten aus Narkoseprotokollen aus dem Universitätsklinikum in Magdeburg A. ö. R. verwendet. Die Vorhersage basiert auf Patientendaten wie z.B. auf dem Alter, Gewicht und der Erkrankung des Patienten und auf den Daten über das Krankenhauspersonal. Das entwickelte Modell ist zwar für ein bestimmtes Krankenhaus spezifisch, aber die allgemeine Vorgehensweise ist generisch und lässt sich somit auf andere Krankenhäuser übertragen. Unser Ansatz umfasst unter Anderem die Diskretisierung der Operationsdauer, die als das Zielattribut verwendet wird, und anschließend die Klassifikation der Operationsdaten unter Nutzung von mehreren Data-Mining-Algorithmen. Das beste Modell wird im Laufe einer Evaluierungsphase mit einer von uns entwickelten Methode gewählt. Um die Verwendung des Modells für die Nutzer aus dem Universitätsklinikum zu ermöglichen, wurde eine Software entwickelt, die das Modell implementiert.
Die auf diese Weise entwickelte Prognose der Operationsdauer kann die Operationsplanung in einem Krankenhaus wesentlich vereinfachen und verbessern. Dadurch lassen sich die Wartezeiten sowohl für Patienten, als auch für das Krankenhauspersonal verringern, woraus die Kostenersparnisse und die Erhöhung der Patientenzufriedenheit resultieren.
Schlagworte
OP-Protokolle, Operationsdauerschätzung, Vorhersagen
Kontakt
Prof. Myra Spiliopoulou
Otto-von-Guericke-Universität Magdeburg
Institut für Technische und Betriebliche Informationssysteme
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758967
weitere Projekte
Die Daten werden geladen ...