« Personen
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html

Leipziger Str. 44

39120

Magdeburg

Tel.:+49 391 6755184

dana.zoellner(at)ovgu.de

Zur Homepage

Doz. Dr. Dana Zöllner

Wissenschaft ist ohne Wissenschaftsmanagement nicht denkbar, denn Wissenschaft ist mehr als die Arbeit in einem Labor. Gerade wenn es um den wissenschaftlichen Nachwuchs geht, ist eine solide Ausbildung das A und O eines starken Wissenschaftsstandortes.
Strukturierte Programme wie das durch die DFG geförderte Graduiertenkolleg 2413 namens SynAGE sind perfekte Umgebungen für eine Promotion: Die Promovierenden haben neben Doktorvater/-mutter weitere Ansprechpartner und das nicht nur auf professoraler Ebene. Der alltägliche Austausch mit Postdocs und anderen Doktoranden im Rahmen von Seminaren, Laborarbeiten, Sommerschulen und vielem mehr hilft sowohl beim Erkenntnisgewinn, bei der Entwicklung eigener Ideen und sozialer Kompetenzen aber auch beim Erkennen der Wichtigkeit des sprichwörtlichen Blickes über den Tellerrand.
Als Koordinatorin unterstütze ich sowohl die Promovierenden, als auch alle anderen am Graduiertenkolleg Beteiligten von den Postdocs bis hin zu den Pis.

Profil • Service

Vita

  • 1996-2001:
      Lehramt an Gymnasien, Fächer: Mathematik und Physik (Abschluß: Erste Staatsprüfung für das Lehramt an Gymnasien) an der Otto-von-Guericke-Universität Magdeburg
  • 1998-2001:
       Lehramt an Gymnasien, Fach: Informatik (Abschluß: Erste Staatsprüfung für das Lehramt an Gymnasien) an der Otto-von-Guericke-Universität Magdeburg
  • 2001-2008:
       Informatik (Abschluß: Baccalaurea der Informatik) an der Otto-von-Guericke-Universität Magdeburg (berufsbegleitendes Studium)
  • 2002-2006:
       Promotion im DFG-Graduiertenkolleg 828 "Micro-Macro-Interactions in Structured Media and Particle Systems"
  • 07.2006:
    Promotionsverteidigung; Dr. rer. nat. mit dem Thema "Monte Carlo Potts Model Simulation and Statistical Mean-Field Theory of Normal Grain Growth"
  • 2006-2008:
       PostDoc im DFG-Graduiertenkolleg 828 "Micro-Macro-Interactions in Structured Media and Particle Systems"
  • seit 2008:
       Wissenschaftliche Mitarbeiterin und Lehrbeauftragte an der Otto-von-Guericke-Universität Magdeburg
  • 01.2015:
    Habilitationssverteidigung; Dr. rer. nat. habil. mit dem wissenschaftlichen Thema "Grain growth in nanocrystalline materials: Where we ve been, where we are, and where we are going" und dem öffentlichen Vortrag zum Thema: "Die Physik vom Eis [The physics of ice]"
  • 10.2015-09.2016:
       Dorothea-Erxleben-Professorin an der Otto-von-Guericke-Universität Magdeburg
  • 10.2016-10.2017:
       Dresden Research Fellow an der Technischen Universität Dresden
  • 11.2017-08.2020:
       Senior Researcher & Guest Researcher am B-CUBE Center for Molecular Bioengineering Dresden
  • 09.2020-12.2022:
       Koordinatorin der Graduate Academy an der Otto-von-Guericke-Universität Magdeburg
  • 2021/2022:
       Otto Mønsted Visiting Professor an der Danmarks Tekniske Universitet DTU Lyngby
  • seit 11.2023:
       Wissenschaftliche Koordinatorin SynAGE, RTG 2413 an der Otto-von-Guericke-Universität Magdeburg

Expertenprofil

Research Management:
As scientific coordinator of the DFG-funded Research Training Group RTG 2413: SynAGE I’m responsible among others for organizing the activities of the RTG such as the Squad Meetings and summer/winter schools as well as for coordinating the educational program of the PhD and MD students.
 
Research:
  • Simulation and Statistical Mean-Field Theory of Grain Growth
    Within the scope of this work I have implemented the Monte Carlo Potts model method in two and three dimensions based on the original works of Anderson et al. and improvements in an object oriented programming language which enabled me to observe directly (in-situ) the microstructure
    and some simulation parameters like for example the volume of all grains and the area of grains in a section. Therewith a tool has been provided to simulate complex grain structures and analyse them regarding, e.g., the topology and to investigate normal grain coarsening by simulation and create a basis for a statistical grain growth theory.
    The simulated microstructure follows after an initial period of time the well known parabolic growth law. The underlying coarsening process of the grain structure develops towards a quasi-stationary state that exhibits statistical self-similarity. Different simulation parameters (e.g., correlation between the number of faces per grain and the grain size) are investigated both by simulation and theory.
    Based on the volumetric rate of change as a quadratic polynomial in the relative grain size x = R/Rmean a statistical mean-field theory
    is formulated that yields a new analytical grain size distribution, which is shown to be in very good agreement with the simulation results.
  •  
    • Grain growth in nanocrystalline materials
      Within the framework of this project grain growth in nanocrystalline materials is modelled. Unlike conventional materials metals and alloys of nanocrystalline size have quite different mechanical properties, which is not only of scientific but also of intense technological interest considering that an increase of grain size during grain growth can result in a loss of important materials properties making them unusable in application.
      A modification of the Potts model method is developed allowing the simulation of nanocrystalline grain growth. Different modification approaches of the standard Potts model are substantiated and their applicability considered, namely approaches to change the grain boundary mobility, the boundary junction mobility or the grain boundary energy and an approach to introduce a finite grain boundary width.
      Large simulation studies in the nanocrystalline growth regime are performed and different metrical and geometrical properties observed. Particular interest is put on the overall temporal development of the structures, where for initially very small grains linear grain growth kinetics is expected changing in later stages to parabolic (normal grain growth) behaviour.
      A comparison between simulation, experimental and theoretical results is planed. Therefore, a statistical mean-field theory should be developed investigating the different growth regimes. Furthermore, nanocrystalline grain growth will be explored experimentally.

    Serviceangebot

    • Wissenschaftsmanagement: Koordinierung eines Graduiertenkollegs
    • Simulation von Rekristallisation, Kornwachstum und Ostwaldreifung im Vergleich oder an Stelle eines Experimentes unter verschiedenen Bedingungen wie beispielsweise in dünnen Schichten
    • Entwicklung von analytischen Theorien zur Beschreibung mikrostruktureller Prozesse
    • Überprüfung von metallischen Kornmikrostrukturen auf Selbstähnlichkeit
    • Generierung von virtuellen Mikrostrukturen z.B. aus gegebener Größenverteilung

    Forschung • Kooperationen

    Projekte

    Die Daten werden geladen ...

    Kooperationsliste

    • Prof. Carl E. Krill III - Universität Ulm
    • Dr. Iain Fielden - Sheffield Hallam University, UK
    • Prof. Elizabeth A. Holm - Sandia National Laboratories, USA
    • Prof. Paulo R. Rios / Universidade Federal Fluminense, Brazil
    • Prof. Rifa El-Khozondar / Al-Aqsa University

    Publikationen

    Top-5 Publikationen

    Die Daten werden geladen ...

    Publikationsliste

    2021
    Die Daten werden geladen ...
    2016
    Die Daten werden geladen ...
    2015
    Die Daten werden geladen ...
    2014
    Die Daten werden geladen ...
    2013
    Die Daten werden geladen ...
    ältere
    2012
    Die Daten werden geladen ...
    2011
    Die Daten werden geladen ...
    2010
    Die Daten werden geladen ...
    2008
    Die Daten werden geladen ...
    2007
    Die Daten werden geladen ...
    2006
    Die Daten werden geladen ...
    2004
    Die Daten werden geladen ...