« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Decoding and controlling the elements of visual experience and perceptual decisions in primates
Finanzierung:
Deutsche Forschungsgemeinschaft (DFG) ;
DFG Programme Heisenberg Professorship

My Heisenberg project addresses the questions of how neurons interact dynamically in space
and time in order to shape visual perception and decision-making. I propose a new programme
of research that combines (i) high dimensional neurophysiological recordings, (ii) causal
interventions directly applied to the relevant neuronal circuits in a time or state-dependent manner
and (iii) a detailed analysis of the underlying neuronal circuitry. The only available experimental
model system to support this currently is the non-human primate, specifically the macaque
monkey. These animals have a visual system closely similar to humans, so that we can
experimentally adopt sophisticated behavioural paradigms. To investigate the underlying brain
connectivity and translate results to the human brain, cutting-edge recording and imaging
technologies for human and non-human primates will be essential for the future, as they are in
my present research.
The long-term scientific aim of my research is to understand and control the neuronal signals that
generate our rich visual experience. In recent years, the closest experimental links between brain
signals and perception have been established in awake primates between the activity of single
neurons and perceptual decisions. I have significant experience and contributions in this area and
now wish to extend this powerful research platform to more naturalistic settings of perception and
action. Specifically, the new work will focus on the continuity of perceptual activities. Rather than
treating perception and behaviour as a sequence of discrete, finite episodes, each culminating in
a decision, the new experimental paradigms will study of how the brain engages in active,
continuous monitoring of the dynamically changing incoming flow of information.
Kontakt

weitere Projekte

Die Daten werden geladen ...