Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
In dieser Arbeit werden Methoden zur automatischen, segmentierungsbasierten Erkennung arabischer Handschrift untersucht und weiterentwickelt. Da sich bisher noch kein zuverlässiger Segmentierungsalgorithmus für arabische Handschrift durchgesetzt hat, werden verschiedene Segmentierungsvarianten nacheinander abgearbeitet, um anschließend die plausibelste Variante zu wählen. Zusätzlich wird für jede Segmentierungsvariante das erkannte Wort mit einem Lexikon verglichen, was ebenfalls Rückschlüsse auf die Korrektheit der Segmentierung ermöglicht und es erlaubt einige Erkennungsfehler zu korrigieren. Es werden hierzu mögliche Vorgehensweisen für die explizite Segmentierung, Merkmalsextraktion und Klassifizierung verglichen und implementiert. Auch die gängigen Klassifikatoren werden auf ihre Eignung untersucht und neuronale Netze zur Bestimmung der Gewichte der einzelnen Merkmale implementiert. Dies kann auch durch genetische Algorithmen trainiert werden.
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
In dieser Arbeit werden Methoden zur automatischen, segmentierungsbasierten Erkennung arabischer Handschrift untersucht und weiterentwickelt. Da sich bisher noch kein zuverlässiger Segmentierungsalgorithmus für arabische Handschrift durchgesetzt hat, werden verschiedene Segmentierungsvarianten nacheinander abgearbeitet, um anschließend die plausibelste Variante zu wählen. Zusätzlich wird für jede Segmentierungsvariante das erkannte Wort mit einem Lexikon verglichen, was ebenfalls Rückschlüsse auf die Korrektheit der Segmentierung ermöglicht und es erlaubt einige Erkennungsfehler zu korrigieren. Es werden hierzu mögliche Vorgehensweisen für die explizite Segmentierung, Merkmalsextraktion und Klassifizierung verglichen und implementiert. Auch die gängigen Klassifikatoren werden auf ihre Eignung untersucht und neuronale Netze zur Bestimmung der Gewichte der einzelnen Merkmale implementiert. Dies kann auch durch genetische Algorithmen trainiert werden.