Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Das Forschungsportal Sachsen-Anhalt verwendet zur Bereitstellung einiger Funktionen Cookies.
Mit der Verwendung dieser Seite erklären Sie sich damit einverstanden. Weitere Informationen
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
In dieser Arbeit werden Methoden zur automatischen, segmentierungsbasierten Erkennung arabischer Handschrift untersucht und weiterentwickelt. Da sich bisher noch kein zuverlässiger Segmentierungsalgorithmus für arabische Handschrift durchgesetzt hat, werden verschiedene Segmentierungsvarianten nacheinander abgearbeitet, um anschließend die plausibelste Variante zu wählen. Zusätzlich wird für jede Segmentierungsvariante das erkannte Wort mit einem Lexikon verglichen, was ebenfalls Rückschlüsse auf die Korrektheit der Segmentierung ermöglicht und es erlaubt einige Erkennungsfehler zu korrigieren. Es werden hierzu mögliche Vorgehensweisen für die explizite Segmentierung, Merkmalsextraktion und Klassifizierung verglichen und implementiert. Auch die gängigen Klassifikatoren werden auf ihre Eignung untersucht und neuronale Netze zur Bestimmung der Gewichte der einzelnen Merkmale implementiert. Dies kann auch durch genetische Algorithmen trainiert werden.
Automatic recognition of Arabic handwriting
In this thesis, methods for the automatic, segmentation-based recognition of Arabic handwriting are investigated and further developed. Since no reliable segmentation algorithm for Arabic handwriting has yet been established, different segmentation variants are processed one after the other in order to subsequently select the most plausible variant. In addition, for each segmentation variant, the recognized word is compared with a lexicon, which also allows conclusions to be drawn about the correctness of the segmentation and allows some recognition errors to be corrected. Possible procedures for explicit segmentation, feature extraction and classification are compared and implemented. The suitability of common classifiers is also examined and neural networks are implemented to determine the weights of the individual features. This can also be trained using genetic algorithms.
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
In dieser Arbeit werden Methoden zur automatischen, segmentierungsbasierten Erkennung arabischer Handschrift untersucht und weiterentwickelt. Da sich bisher noch kein zuverlässiger Segmentierungsalgorithmus für arabische Handschrift durchgesetzt hat, werden verschiedene Segmentierungsvarianten nacheinander abgearbeitet, um anschließend die plausibelste Variante zu wählen. Zusätzlich wird für jede Segmentierungsvariante das erkannte Wort mit einem Lexikon verglichen, was ebenfalls Rückschlüsse auf die Korrektheit der Segmentierung ermöglicht und es erlaubt einige Erkennungsfehler zu korrigieren. Es werden hierzu mögliche Vorgehensweisen für die explizite Segmentierung, Merkmalsextraktion und Klassifizierung verglichen und implementiert. Auch die gängigen Klassifikatoren werden auf ihre Eignung untersucht und neuronale Netze zur Bestimmung der Gewichte der einzelnen Merkmale implementiert. Dies kann auch durch genetische Algorithmen trainiert werden.