

** $P_{scatt} = p \cdot \sigma_t \cdot p \cdot N_e \approx 10^{-10} W$ N_e-number of emitted electrons σ_{t} – Tomson cross-section

** Thomson, J. J. (1905). "On the emission of negative corpuscles by the alkali metals". Philosophical Magazine, Ser. 6 10 (59): 584–590

Experimental set up

*
$$\sigma_p = 8\pi \alpha^2 \omega^4 V^2 / 3c^4 \quad \alpha = \frac{3(\varepsilon_r - 1)}{4\pi(\varepsilon_r + 2)}$$

 $P_{scatt} = p\sigma_p \approx 10^{-8} W$
 ε_r - particle permeability
 ε_r - particle permeability
 ω - microwave frequency
 V – particle volume
 c – light velocity

*Landau and Lifshitz, Electrodynamics of continuous Media, 2nd etition ,1982, Oxford, New Yourk

Class particle coved with 50 nm gold layer

– particle volume

Microwave scattering can be applied for monitoring of: particle deformation, crack initiation, emission of electrons during the crack formation, measurement of contact time by particle impact.