Pilotstudie zur Entwicklung eines Systems zur automatisierten Schmerzerkennung in der postoperativen Phase
Projektleiter:
Finanzierung:
Aufgabe des Projektes ist es, die kameragestützte automatische Analyse von schmerzbedingten Veränderungen des Antlitzes auf ihre Praktikabilität zu untersuchen. Schmerz ist ein regelmäßig im postoperativen Verlauf auftretendes Ereignis, dass durch personalaufwendige Untersuchungsmethoden oft unzureichend oder verspätet erkannt wird und eine ausgeprägte faciale Reflektion aufweist. Dafür bietet die Bildverarbeitung leistungsfähige Algorithmen zur Gesichtserfassung, Merkmalsextrahierung wie auch Mimikanalyse.
Im Projekt sollen diese Algorithmen in einem ersten Schritt an Probanden untersucht und in Hinsicht auf Erkennung und Quantifizierung von Schmerzen weiterentwickelt werden. Es erfolgt die Bildaufnahme und Mustererkennung vorerst in farbigen Raum-Zeit-Bildern vom menschlichen Gesicht unter Schmerzen. Dabei werden die Probanden einem definierten Schmerzreiz ausgesetzt und die Schmerzintensität mit klinischen Methoden gemessen. Es werden geeignete Gesichtsmerkmale zur Bewertung der individuellen Schmerzintensität durch die Einbeziehung von Medizinern und beim Training des Systems parallel erfasste biomedizinische Daten festgelegt. Basierend auf der Merkmalsauswahl erfolgt die Klassifikation auf der Grundlage der Merkmalsänderungen, die durch Muskelaktivität hervorgerufen werden.
Im Projekt sollen diese Algorithmen in einem ersten Schritt an Probanden untersucht und in Hinsicht auf Erkennung und Quantifizierung von Schmerzen weiterentwickelt werden. Es erfolgt die Bildaufnahme und Mustererkennung vorerst in farbigen Raum-Zeit-Bildern vom menschlichen Gesicht unter Schmerzen. Dabei werden die Probanden einem definierten Schmerzreiz ausgesetzt und die Schmerzintensität mit klinischen Methoden gemessen. Es werden geeignete Gesichtsmerkmale zur Bewertung der individuellen Schmerzintensität durch die Einbeziehung von Medizinern und beim Training des Systems parallel erfasste biomedizinische Daten festgelegt. Basierend auf der Merkmalsauswahl erfolgt die Klassifikation auf der Grundlage der Merkmalsänderungen, die durch Muskelaktivität hervorgerufen werden.
Schlagworte
Medizintechnik, Schmerzforschung, automatische Gesichtserkennung
Kontakt
Dr. Dominik Brammen
Otto-von-Guericke-Universität Magdeburg
Universitätsklinik für Anaesthesiologie und Intensivtherapie
Leipziger Str. 44
39120
Magdeburg
Tel.:+49 391 6713500
weitere Projekte
Die Daten werden geladen ...