Efficient Visual Analysis of Dynamic Medical Image Data
Projektleiter:
Projektbearbeiter:
Sebastian Schäfer
Finanzierung:
Spatial and temporal resolution of tomographic medical image data (CT, MRI, ultrasound; etc.) being acquired in medical diagnostics and clinical studies has increased substantially and will increase further. Particu-larly for dynamic image data, the evaluation software does not sufficiently exploit the rich information. A framework shall be developed that combines image interpretation techniques with visual analysis of 4D dynamic medical image data. Perfusion data is an important and representative example for dynamic medical image data. These data are acquired, e.g., in ischemic stroke, cardiac, and tumor diag-nosis. A multi-dimensional space of perfusion parameters needs to be explored to perform a reliable diagnosis. For the first time, adaptive model-based segmentation techniques will be developed to delineate regions of interest in these 4D data sets. Such a visually supported analysis has several advantages:
- Implicit training lets the user adapt the tool for specializing it to selected problems in perfusion analysis.
- An efficient general solution is provided which might be adapted according to the specific imaging device, the imaging sequence, or the type of contrast agent administration.
- Interpretation tools can be extended to similar analysis problems, e.g. fMRI data evaluation.
Schlagworte
Dynamic medical image data, image analysis, visual analytics
Kontakt
Prof. Dr. Klaus Tönnies
Otto-von-Guericke-Universität Magdeburg
Institut für Simulation und Graphik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758873
weitere Projekte
Die Daten werden geladen ...