« Projekte
Sie verwenden einen sehr veralteten Browser und können Funktionen dieser Seite nur sehr eingeschränkt nutzen. Bitte aktualisieren Sie Ihren Browser. http://www.browser-update.org/de/update.html
Planare und Vertikale Homo- und Heteroübergänge für Innovative GaN-basierte Leistungsbauelemente
Projektbearbeiter:
apl. Prof. Dr. habil. Frank Bertram
Finanzierung:
Deutsche Forschungsgemeinschaft (DFG) ;
Planare und Vertikale Homo- und Heteroübergänge für Innovative GaN-basierte Leistungsbauelemente
RESURF- AlGaN/GaN HFET (a) Schematic sample setup together with (b) cross-sectional HAADF image, (c) CL spectrum line scan
Die Entwicklung der Gruppe III-Nitride hat eine neue Ära in der Hochfrequenz- und Hochleistungselektronik eingeleitet. Unter anderem durch den Übergang zu regenerativen Energiequellen und zur Elektromobilitiät werden effizientere, kompaktere und wirtschaftlichere Energiewandlungssysteme benötigt. Das große Potenzial der GaN-Leistungselektronik wird durch eine hohe Baliga Figure of Merit eindrucksvoll belegt.Aktuelles Arbeitspferd ist der laterale AlGaN/GaN-HFET, der bis 600 V kommerzialisiert ist. Im Allgemeinen wird jedoch eine vertikale Bauelementgeometrie aufgrund signifikanter Skalierungsvorteile und verbesserter Isolationseigenschaften bevorzugt. Elektrische Feldstärkespitzen liegen im Volumen, wodurch vertikale Bauelemente weniger anfällig für oberflächenbedingte Durchschläge und parasitäre Effekte wie Current Collapse sind. Vertikale Leistungsbauelemente sind auf 3D-Feldformungs- und Stromführungsstrukturen (Heterostrukturen) angewiesen, um niedrige Leckströme und hohe Durchbruchspannungen zu gewährleisten. Da Dotierstoff-Implantation und -Diffusion in GaN nicht einsetzbar sind, werden Selective-Area Growth (SAG)-Prozesse benötigt. SAG hat bereits vielversprechende Ergebnisse gezeigt, der technologische Reifegrad ist für eine Kommerzialisierung jedoch nicht ausreichend. Problematisch ist die nicht optimale Materialqualität, insbesondere in Bezug auf Kristalldefekte und defektreiche Grenzflächen. Neben den hohen Kosten von nativen GaN-Substraten verhindern mangelnde Kenntnisse von Mikrostruktur und Defekteigenschaften sowie unausgereifte Herstellungsprozesse die Entwicklung konkurrenzfähiger vertikaler GaN-Bauelemente.In diesem Projekt wird eine systematische Analyse von Wachstums- und Prozess-bedingten Defekten und der mikroskopischen Eigenschaften von p-n-Übergängen und Heteroübergängen durchgeführt. Die Compound Semiconductor Technology (CST, RWTH Aachen) wird SAG-Prozesse einsetzen, um planare und vertikale p-n-Übergänge und Heteroübergänge in spezifischen Teststrukturen zu implementieren. Die Halbleiterphysik (OvGU Magdeburg) wird auf dieser Basis detaillierte mikro- und nanoskopische Studien mittels (Raster-)Transmissions-elektronenmikroskopie ((S)TEM), Kathodolumineszenz (STEM-CL)-Spektroskopie, "elektronen-strahlinduziertem Strom" (STEM-EBIC)-Messungen sowie Time-of-Flight-Analysen durchführen, um Defekte zu identifizieren, Ladungsträger- und Exzitonentransport/-dynamik zu charakterisieren und diese mit elektrischen Daten und Wachstums-/Prozessbedingungen zu verknüpfen. Dies, ergänzt durch physikalische Modellierung, wird ein tieferes Verständnis der Auswirkungen von Defekten und Prozessen auf die makroskopischen Material-, Grenzflächen- und Bauelementeigenschaften erlauben und zu neuen Strategien zur Herstellung von Leistungsbauelementen führen. Schließlich werden verbesserte Junction-Barrier-Schottky-Dioden (JBS), Vertical-Channel-Junction-FET (vc-JFET) oder Current-Aperture-Vertical-Electron-Transistoren (CAVET) demonstriert.

Kooperationen im Projekt

Kontakt

weitere Projekte

Die Daten werden geladen ...